148 research outputs found

    What grid cells convey about rat location

    Get PDF
    We characterize the relationship between the simultaneously recorded quantities of rodent grid cell firing and the position of the rat. The formalization reveals various properties of grid cell activity when considered as a neural code for representing and updating estimates of the rat's location. We show that, although the spatially periodic response of grid cells appears wasteful, the code is fully combinatorial in capacity. The resulting range for unambiguous position representation is vastly greater than the ≈1–10 m periods of individual lattices, allowing for unique high-resolution position specification over the behavioral foraging ranges of rats, with excess capacity that could be used for error correction. Next, we show that the merits of the grid cell code for position representation extend well beyond capacity and include arithmetic properties that facilitate position updating. We conclude by considering the numerous implications, for downstream readouts and experimental tests, of the properties of the grid cell code

    Testing the Seyfert Unification Theory: Chandra HETGS Observations of NGC 1068

    Get PDF
    We present spatially resolved Chandra HETGS observations of the Seyfert 2 galaxy NGC 1068. X-ray imaging and high resolution spectroscopy are used to test the Seyfert unification theory. Fe K-alpha emission is concentrated in the nuclear region, as are neutral and ionized continuum reflection. This is consistent with reprocessing of emission from a luminous, hidden X-ray source by the obscuring molecular torus and X-ray narrow-line region (NLR). We detect extended hard X-ray emission surrounding the X-ray peak in the nuclear region, which may come from the outer portion of the torus. Detailed modeling of the spectrum of the X-ray NLR confirms that it is excited by photoionization and photoexcitation from the hidden X-ray source. K-shell emission lines from a large range of ionization states of H-like and He-like N, O, Ne, Mg, Al, Si, S, and Fe XVII-XXIV L-shell emission lines are modeled. The emission measure distribution indicates roughly equal masses at all observed ionization levels in the range log xi=1-3. We separately analyze the spectrum of an off-nuclear cloud. We find that it has a lower column density than the nuclear region, and is also photoionized. The nuclear X-ray NLR column density, optical depth, outflow velocity, and electron temperature are all consistent with values predicted by optical spectropolarimetry for the region which provides a scattered view of the hidden Seyfert 1 nucleus

    Decomposing the misery index: A dynamic approach

    Get PDF
    YesThe misery index (the unweighted sum of unemployment and inflation rates) was probably the first attempt to develop a single statistic to measure the level of a population’s economic malaise. In this letter, we develop a dynamic approach to decompose the misery index using two basic relations of modern macroeconomics: the expectations-augmented Phillips curve and Okun’s law. Our reformulation of the misery index is closer in spirit to Okun’s idea. However, we are able to offer an improved version of the index, mainly based on output and unemployment. Specifically, this new Okun’s index measures the level of economic discomfort as a function of three key factors: (1) the misery index in the previous period; (2) the output gap in growth rate terms; and (3) cyclical unemployment. This dynamic approach differs substantially from the standard one utilised to develop the misery index, and allow us to obtain an index with five main interesting features: (1) it focuses on output, unemployment and inflation; (2) it considers only objective variables; (3) it allows a distinction between short-run and long-run phenomena; (4) it places more importance on output and unemployment rather than inflation; and (5) it weights recessions more than expansions

    An investigation of the impact of young children's self-knowledge of trustworthiness on school adjustment: a test of the realistic self-knowledge and positive illusion models

    Get PDF
    The study aimed to examine the relationship between self-knowledge of trustworthiness and young children’s school adjustment. One hundred and seventy-three (84 male and 89 female) children from school years 1 and 2 in the United Kingdom (mean age 6 years 2 months) were tested twice over one year. Children’s trustworthiness was assessed using: (a) self-report at Time 1 and Time 2, (b) peers’ reports at Time 1 and Time 2, and (c) teacher-reports at Time 2. School adjustment was assessed by child-rated school-liking and the Short-Form Teacher Rating Scale of School Adjustment. Longitudinal quadratic relationships were found between school adjustment and children’s self-knowledge, using peer-reported trustworthiness as a reference: more accurate self-knowledge of trustworthiness predicted increases in school adjustment. Comparable concurrent quadratic relationships were found between teacher-rated school adjustment and children’s self-knowledge, using teacher-reported trustworthiness as a reference, at Time 2. The findings support the conclusion that young children’s psychosocial adjustment is best accounted for by the realistic self-knowledge model (Colvin & Block, 1994)

    Recurrent, Robust and Scalable Patterns Underlie Human Approach and Avoidance

    Get PDF
    BACKGROUND. Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach), decrease (avoid), or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory. METHODOLOGY/PRINCIPAL FINDINGS. Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i) a preference trade-off counterbalancing approach and avoidance, (ii) a value function linking preference intensity to uncertainty about preference, and (iii) a saturation function linking preference intensity to its standard deviation, thereby setting limits to both. CONCLUSIONS/SIGNIFICANCE. These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory. Since variables in these patterns have been associated with reward circuitry structure and function, they may provide a method for quantitative phenotyping of normative and pathological function (e.g., psychiatric illness).National Institute on Drug Abuse (14118, 026002, 026104, DABK39-03-0098, DABK39-03-C-0098); The MGH Phenotype Genotype Project in Addiction and Mood Disorder from the Office of National Drug Control Policy - Counterdrug Technology Assessment Center; MGH Department of Radiology; the National Center for Research Resources (P41RR14075); National Institute of Neurological Disorders and Stroke (34189, 05236

    Silicon central pattern generators for cardiac diseases

    Get PDF
    Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin–Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease
    corecore