68 research outputs found

    Plant-plant competition influences temporal dynamism of soil microbial enzyme activity.

    Get PDF
    Root-derived compounds can change rates of soil organic matter decomposition (rhizosphere priming effects) through microbial production of extracellular enzymes. Such soil priming can be affected by plant identity and soil nutrient status. However, the effect of plant-plant competition on the temporal dynamics of soil organic matter turnover processes is not well understood. This study used zymography to detect the spatial and temporal pattern of cellulase and leucine aminopeptidase activity, two enzyme classes involved in soil organic matter turnover. The effect of plant-plant competition on enzyme activity was examined using barley (Hordeum vulgare) plants grown in i) isolation, ii) intra- and iii) inter-cultivar competition. The enzyme activities of leucine aminopeptidase and cellulase were measured from portions of the root system at 18, 25 and 33 days after planting, both along the root axis and in the root associated area with detectable enzyme activity. The activities of cellulase and leucine aminopeptidase were both strongly associated with plant roots, and increased over time. An increase in the area of cellulase activity around roots was delayed when plants were in competition compared to in isolation. A similar response was found for leucine aminopeptidase activity, but only when in intra-cultivar competition, and not when in inter-cultivar competition. Therefore, plant-plant competition had a differential effect on enzyme classes, which was potentially mediated through root exudate composition. This study demonstrates the influence of plant-plant competition on soil microbial activity and provides a potential mechanism by which temporal dynamism in plant resource capture can be mediated

    Plant functional and taxonomic diversity in European grasslands along climatic gradients

    Get PDF
    Aim: European grassland communities are highly diverse, but patterns and drivers of their continental-scale diversity remain elusive. This study analyses taxonomic and functional richness in European grasslands along continental-scale temperature and precipitation gradients. Location: Europe. Methods: We quantified functional and taxonomic richness of 55,748 vegetation plots. Six plant traits, related to resource acquisition and conservation, were analysed to describe plant community functional composition. Using a null-model approach we derived functional richness effect sizes that indicate higher or lower diversity than expected given the taxonomic richness. We assessed the variation in absolute functional and taxonomic richness and in functional richness effect sizes along gradients of minimum temperature, temperature range, annual precipitation, and precipitation seasonality using a multiple general additive modelling approach. Results: Functional and taxonomic richness was high at intermediate minimum temperatures and wide temperature ranges. Functional and taxonomic richness was low in correspondence with low minimum temperatures or narrow temperature ranges. Functional richness increased and taxonomic richness decreased at higher minimum temperatures and wide annual temperature ranges. Both functional and taxonomic richness decreased with increasing precipitation seasonality and showed a small increase at intermediate annual precipitation. Overall, effect sizes of functional richness were small. However, effect sizes indicated trait divergence at extremely low minimum temperatures and at low annual precipitation with extreme precipitation seasonality. Conclusions: Functional and taxonomic richness of European grassland communities vary considerably over temperature and precipitation gradients. Overall, they follow similar patterns over the climate gradients, except at high minimum temperatures and wide temperature ranges, where functional richness increases and taxonomic richness decreases. This contrasting pattern may trigger new ideas for studies that target specific hypotheses focused on community assembly processes. And though effect sizes were small, they indicate that it may be important to consider climate seasonality in plant diversity studies

    Mouse Chromosome 11

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46996/1/335_2004_Article_BF00648429.pd

    The interplay of positive and negative species interactions across an environmental gradient: insights from an individual-based simulation model

    No full text
    Positive interspecific interactions are commonplace, and in recent years ecologists have begun to realize how important they can be in determining community and ecosystem dynamics. It has been predicted that net positive interactions are likely to occur in environments characterized by high abiotic stress. Although empirical field studies have started to support these predictions, little theoretical work has been carried out on the dynamic nature of these effects and their consequences for community structure. We use a simple patch-occupancy model to simulate the dynamics of a pair of species living on an environmental gradient. Each of the species can exist as either a mutualist or a cheater. The results confirm the prediction: a band of mutualists tends to occur in environmental conditions beyond the limits of the cheaters. The region between mutualists and cheaters is interesting: population density here is low. Mutualists periodically occupy this area, but are displaced by cheaters, who themselves go extinct in the absence of the mutualists. Furthermore, the existence of mutualists extends the area occupied by the cheaters, essentially increasing their realized niche. Our approach has considerable potential for improving our understanding of the balance between positive and negative interspecific interactions and for predicting the probable impacts of habitat loss and climate change on communities dominated by positive interspecific interactions

    The distribution of positive and negative species interactions across environmental gradients on a dual lattice model

    No full text
    There has been considerable recent interest in understanding the role of positive inter-specific interactions within ecology, and significant progress has been made both empirically and theoretically. Similarly, considerable progress has been made in improving our understanding of the mechanisms that limit species’ ranges. In this contribution, we seek to understand the setting of species’ borders when some species within the assemblage exhibit positive inter-specific interactions. We use a spatially explicit dual-lattice simulation model to explore the distribution of different interactions across environmental gradients. We first simulate community dynamics when there is either a gradient in reproductive rate or in mortality. We then consider what happens when gradients in reproduction and mortality run in parallel or perpendicular to one another. If the stress gradient impacts on reproductive potential, positive interactions are found where there is high abiotic stress. In this instance, the mutualists are able to tolerate an environment that the cheaters cannot. However, when the stress gradient influences mortality, we find that the mutualists occur as a stripe surrounded by cheaters both towards the better and the harsher ends of the gradient. Previous theory and most empirical evidence tend to indicate that net positive interactions are likely to occur in environments characterized by high abiotic stress. However, evidence from some stress gradients suggests that the distribution of positive and negative interactions can be more complex, with the most stressful environments being occupied by individuals engaging in negative rather than positive interactions. Our results provide a potential theoretical explanation for these recent field observation, and highlight the need for further theoretical and empirical work to better our understanding of how positive and negative interactions act to determine the limits to species’ ranges

    A world malaria map: Plasmodium falciparum endemicity in 2007

    Get PDF
    BACKGROUND: Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. METHODS AND FINDINGS: A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2-10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2-10 < or = 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR2-10 > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR2-10 > or = 40%) areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion), with a smaller number (0.11 billion) at low stable risk.CONCLUSIONS: High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are found in the Americas. Low endemicity is also widespread in CSE Asia, but pockets of intermediate and very rarely high transmission remain. There are therefore significant opportunities for malaria control in Africa and for malaria elimination elsewhere. This 2007 global P. falciparum malaria endemicity map is the first of a series with which it will be possible to monitor and evaluate the progress of this intervention process

    The co-distribution of Plasmodium falciparum and hookworm among African schoolchildren

    No full text
    BACKGROUND: Surprisingly little is known about the geographical overlap between malaria and other tropical diseases, including helminth infections. This is despite the potential public health importance of co-infection and synergistic opportunities for control. METHODS: Statistical models are presented that predict the large-scale distribution of hookworm in sub-Saharan Africa (SSA), based on the relationship between prevalence of infection among schoolchildren and remotely sensed environmental variables. Using a climate-based spatial model of the transmission potential for Plasmodium falciparum malaria, adjusted for urbanization, the spatial congruence of populations at coincident risk of infection is determined. RESULTS: The model of hookworm indicates that the infection is widespread throughout Africa and that, of the 179.3 million school-aged children who live on the continent, 50.0 (95% CI: 48.9-51.1) million (27.9% of total population) are infected with hookworm and 45.1 (95% CI: 43.9-46) million are estimated to be at risk of coincident infection. CONCLUSION: Malaria and hookworm infection are widespread throughout SSA and over a quarter of school-aged children in sub-Saharan Africa appear to be at risk of coincident infection and thus at enhanced risk of clinical disease. The results suggest that the control of parasitic helminths and of malaria in school children could be viewed as essential co-contributors to promoting the health of schoolchildren
    • …
    corecore