6,082 research outputs found

    School Learning Gardens as Multicultural Hubs for Sustainability: PSU-PPS Food Systems Partnerships in Outer Southeast Portland

    Get PDF
    This presentation focuses on how garden-based learning can have a positive effect on children

    The Genomic Diversity and Phylogenetic Relationship in the Family Iridoviridae

    Get PDF
    The Iridoviridae family are large viruses (∼120–200 nm) that contain a linear double-stranded DNA genome. The genomic size of Iridoviridae family members range from 105,903 bases encoding 97 open reading frames (ORFs) for frog virus 3 to 212,482 bases encoding 211 ORFs for Chilo iridescent virus. The family Iridoviridae is currently subdivided into five genera: Chloriridovirus, Iridovirus, Lymphocystivirus, Megalocytivirus, and Ranavirus. Iridoviruses have been found to infect invertebrates and poikilothermic vertebrates, including amphibians, reptiles, and fish. With such a diverse array of hosts, there is great diversity in gene content between different genera. To understand the origin of iridoviruses, we explored the phylogenetic relationship between individual iridoviruses and defined the core-set of genes shared by all members of the family. In order to further explore the evolutionary relationship between the Iridoviridae family repetitive sequences were identified and compared. Each genome was found to contain a set of unique repetitive sequences that could be used in future virus identification. Repeats common to more than one virus were also identified and changes in copy number between these repeats may provide a simple method to differentiate between very closely related virus strains. The results of this paper will be useful in identifying new iridoviruses and determining their relationship to other members of the family

    The Mass-Size Relation from Clouds to Cores. II. Solar Neighborhood Clouds

    Get PDF
    We measure the mass and size of cloud fragments in several molecular clouds continuously over a wide range of spatial scales (0.05 < r / pc < 3). Based on the recently developed "dendrogram-technique", this characterizes dense cores as well as the enveloping clouds. "Larson's 3rd Law" of constant column density, m(r) = C*r^2, is not well suited to describe the derived mass-size data. Solar neighborhood clouds not forming massive stars (< 10 M_sun; Pipe Nebula, Taurus, Perseus, and Ophiuchus) obey m(r) < 870 M_sun (r / pc)^1.33 . In contrast to this, clouds forming massive stars (Orion A, G10.15-0.34, G11.11-0.12) do exceed the aforementioned relation. Thus, this limiting mass-size relation may approximate a threshold for the formation of massive stars. Across all clouds, cluster-forming cloud fragments are found to be---at given radius---more massive than fragments devoid of clusters. The cluster-bearing fragments are found to roughly obey a mass-size law m = C*r^1.27 (where the exponent is highly uncertain in any given cloud, but is certainly smaller than 1.5).Comment: accepted to the Astrophysical Journa

    Run 2 Upgrades to the CMS Level-1 Calorimeter Trigger

    Get PDF
    The CMS Level-1 calorimeter trigger is being upgraded in two stages to maintain performance as the LHC increases pile-up and instantaneous luminosity in its second run. In the first stage, improved algorithms including event-by-event pile-up corrections are used. New algorithms for heavy ion running have also been developed. In the second stage, higher granularity inputs and a time-multiplexed approach allow for improved position and energy resolution. Data processing in both stages of the upgrade is performed with new, Xilinx Virtex-7 based AMC cards.Comment: 10 pages, 7 figure

    The threats endangering Australia's at-risk fauna

    Get PDF
    Reducing the rate of species extinctions is one of the great challenges of our time. Understanding patterns in the distribution and frequency of both threatened species and the threatening processes affecting them improves our ability to mitigate threats and prioritize management actions. In this quantitative synthesis of processes threatening Australian at-risk fauna, we find that species are impacted by a median of six threats (range 1–19), though there is considerable variation in numbers of threats among major taxonomic groups. Invasive species, habitat loss, biological resource use, natural systems modification and climate change are the processes most commonly affecting Australian threatened species. We identified an uneven distribution of research knowledge among species, with half of the total number of species-specific peer-reviewed scientific publications associated with only 11 threatened species (2.7%). Furthermore, the number of threats associated with each species was correlated with the research effort for that species, and research effort was correlated with body mass. Hence, there appears to be a research bias towards larger-bodied species, and certain charismatic species, that could result in inferences biased towards these favored species. However, after accounting for these effects we found that for birds, amphibians, reptiles and marine mammals body mass is positively correlated with the number of threats associated with each species. Many threats also co-occur, indicating that threat syndromes may be common

    The Age, Stellar Content and Star Formation Timescale of the B59 Dense Core

    Full text link
    We have used moderate resolution, near-infrared spectra from the SpeX spectrograph on the NASA Infrared Telescope facility to characterize the stellar content of Barnard 59 (B59), the most active star-forming core in the Pipe Nebula. Measuring luminosity and temperature sensitive features in the spectra of 20 candidate YSOs, we identified likely background giant stars and measured each star's spectral type, extinction, and NIR continuum excess. We find that B59 is composed of late type (K4-M6) low-mass (0.9--0.1 M_sun) YSOs whose median stellar age is comparable to, if not slightly older than, that of YSOs within the Rho Oph, Taurus, and Chameleon star forming regions. Deriving absolute age estimates from pre-main sequence models computed by D'Antona et al., and accounting only for statistical uncertainties, we measure B59's median stellar age to be 2.6+/-0.8 Myrs. Including potential systematic effects increases the error budget for B59's median (DM98) stellar age to 2.6+4.1/-2.6 Myrs. We also find that the relative age orderings implied by pre-main sequence evolutionary tracks depend on the range of stellar masses sampled, as model isochrones possess significantly different mass dependencies. The maximum likelihood median stellar age we measure for B59, and the region's observed gas properties, suggest that the B59 dense core has been stable against global collapse for roughly 6 dynamical timescales, and is actively forming stars with a star formation efficiency per dynamical time of ~6%. This maximum likelihood value agrees well with recent star formation simulations that incorporate various forms of support against collapse, such as sub-critical magnetic fields, outflows, and radiative feedback from protostellar heating. [abridged]Comment: 20 pages, 12 figures, accepted for publication in the Astrophysical Journal; updated to amend acknowledgment

    Measuring subluxation of the hemiplegic shoulder: Reliability of a method

    Get PDF
    Objective: Subluxation of the shoulder after stroke can be measured according to the method described by Van Langenberghe and Hogan. Methods: To evaluate the reliability of this method, the shoulder radiographs of 25 patients were available for this study. Two independent raters each assessed these radiographs twice. Results: The intrarater reliability was good: percentage of agreement was 88 and 84%, weighted κ, 0.69 [95% confidence interval (CI), 0.38-1 0] and 0.78 (95% CI, 0.60-0.95) for raters 1 and 2, respectively. The interrater reliability was poor: percentage of agree ment was 36 and 28%, κ, 0.11 (95% CI, 0.0-0.31) and 0.09 (95% CI, 0.0-0.23) in sessions 1 and 2, respectively. Subsequently the original method was adjusted by com bining two categories (no subluxation and beginning subluxation) into one (“no clin ically important subluxation”). Conclusions: After this adjustment of the categories, the interrater reliability improved [percentage of agreement, 72%, and κ, 0.49 (95% CI, 0.18-0.80)], but did not reach acceptable values

    Advances in genetics: widening our understanding of prostate cancer

    Get PDF
    Prostate cancer is a leading cause of cancer-related death in Western men. Our understanding of the genetic alterations associated with disease predisposition, development, progression, and therapy response is rapidly improving, at least in part, owing to the development of next-generation sequencing technologies. Large advances have been made in our understanding of the genetics of prostate cancer through the application of whole-exome sequencing, and this review summarises recent advances in this field and discusses how exome sequencing could be used clinically to promote personalised medicine for prostate cancer patients.</ns4:p
    corecore