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Abstract
Prostate cancer is a leading cause of cancer-related death in Western men.
Our understanding of the genetic alterations associated with disease
predisposition, development, progression, and therapy response is rapidly
improving, at least in part, owing to the development of next-generation
sequencing technologies. Large advances have been made in our
understanding of the genetics of prostate cancer through the application of
whole-exome sequencing, and this review summarises recent advances in this
field and discusses how exome sequencing could be used clinically to promote
personalised medicine for prostate cancer patients.
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Introduction
Prostate cancer (PCa) is the most common cancer among men in 
the UK, with over 40,000 cases diagnosed every year1. More than 
10,000 men die from the disease in the UK per annum, making 
it the second most common cause of cancer-related death behind  
only lung cancer. Similarly, in the USA, PCa accounts for just over a 
quarter of all cancer diagnoses in men, with 220,800 diagnoses and 
27,540 deaths from PCa predicted in 20152. Statistically significant 
risk factors associated with PCa include ethnicity, family history of 
the disease, and age3, with over 75% of all PCa cases diagnosed in 
men over 65 years of age1. Other factors such as cigarette smoking 
history, lower physical activity, higher body mass index, and height 
are associated with increased risk of fatal disease3,4.

PCa growth is dependent upon the androgen receptor (AR), a  
ligand-dependent transcription factor. In response to androgen 
binding (the major AR ligand in prostate is dihydrotestosterone), 
the AR regulates the expression of target genes/proteins important 
in PCa growth (e.g. 5–7). The treatment given to patients with PCa 
is dependent on the grade and stage of the disease8. PCa that is 
contained within the prostate capsule can be removed via surgery to 
remove the prostate or treated using radiotherapy9. Given the poten-
tial side effects and the fact that low-grade tumours often grow 
slowly and may not become clinically significant, many patients, 
especially if they are older, tend to be monitored rather than treated 
(termed “active surveillance”).

Since androgenic hormones drive prostate tumour growth, thera-
pies that target the androgen signalling pathway are commonly 
used for tumours that have spread outside the capsule10. These ini-
tial hormonal therapies fall into two categories11,12. The first blocks 
the gonadal production of androgens by pituitary downregulation. 
This can be achieved using luteinising hormone releasing hormone 
(LHRH) analogues. They cause an initial spike in androgen levels; 
however, within 2 weeks, castrate levels of circulating testosterone 
are achieved due to hyperstimulation of the hypothalamo-pituitary 
axis. In contrast, anti-androgen therapies (e.g. bicalutamide and 
enzalutamide) do not reduce androgen levels per se but act directly 
on the AR; their binding to it results in the AR adopting an inactive 
conformation with subsequent inhibition of downstream events. 
The two approaches may be used sequentially with a switch in 
treatment when the first fails, or simultaneously in complete andro-
gen blockade. However, although such hormone therapy is initially 
successful in the majority of patients, it invariably eventually fails, 
with tumours becoming unresponsive to therapy within 1–3 years 
and tumours progressing to the aggressive stage termed castration-
resistant PCa (CRPC). Although in recent years several new thera-
pies have been developed with some licensed for use in CRPC13,14, 
there remain few effective options and the mean survival period 
for patients with CRPC in 2012 was just 13.5 months15. There is 
therefore a great need to identify therapeutic strategies to prevent/
treat CRPC but also to develop the means and biomarkers to stratify 
patients for optimal therapy, and the genetic information from the 
studies described below is a major step in this process.

Whole-exome sequencing
The human genome consists of approximately 3 × 109 base pairs. 
Only around 1% of these (3 × 107 base pairs) is believed to represent 

coding sequence, but it is estimated that 85% of disease-causing 
mutations are located in these coding regions of the genome – 
collectively termed the exome16,17. Hence, most studies to date 
have concentrated on characterizing the exome, initially indirectly, 
through microarray expression analyses, and now owing to 
advances in DNA sequencing technologies by whole-exome 
sequencing (WES). WES, on which this review focuses, has led 
the way in uncovering mutations in coding regions responsible for 
many diseases and in practical and economic terms is, for many, 
more feasible than whole-genome sequencing (WGS), although it 
will not identify changes in non-coding regions of the genome (see 
later)18. Hence, availability of financial resources as well as project-
specific requirements (such as the ability to detect splice variants, 
gene fusions, and non-coding transcripts) are likely to influence 
decisions on whether to employ WGS, transcriptomic sequenc-
ing, WES, or other forms of targeted re-sequencing (such as deep 
sequencing of targeted gene panels).

In WES, DNA sequences are isolated only from exons, and data 
analysis compares the patient sequence to that of a reference 
exome aligning all of the captured exons. The variants found are 
compared to a control population database containing non-disease- 
causing variants. After the common variants are filtered out, the data 
can be compared to the exomes of unaffected individuals or nor-
mal tissue to identify disease-associated variants19. The first exome 
sequencing study to be reported was performed by Ng et al.20, in 
which the exomes of 12 individuals with Freeman–Sheldon syn-
drome (FSS), a rare dominantly inherited disorder, were sequenced. 
In agreement with previous reports21, the study demonstrated that 
mutations of embryonic myosin heavy chain (MYH3) were present 
in patients with the disease. Since this study, the amount of litera-
ture published using WES technology, and the range of diseases, 
has been increasing exponentially. Furthermore, the successful 
diagnostic rate of rare disease using this technology has now 
reached 25%22, with many clinical laboratories offering WES as a 
cost-effective means of clinical testing and diagnosis23.

WES is preferably performed on DNA obtained from fresh or  
frozen patient samples. The issue of obtaining fresh PCa tissue for 
genome analysis was recently addressed by Menon and colleagues, 
who used WES to compare fresh samples and formalin-fixed  
paraffin-embedded (FFPE) material from the same patient24. The 
study demonstrated a high degree of overlap in single nucleotide 
variations in both types of samples, suggesting that FFPE material 
is a viable option for such studies. This supports previous work by 
Schweiger et al. and Kerick et al.25,26 and is a major consideration 
for PCa research, since it supports the use of archival FFPE biopsy 
samples for WES.

The availability of samples from advanced metastatic PCa is  
historically limited to biopsies taken from the primary tumour; 
analysis of tumours to, for example, identify mechanisms of therapy 
resistance has therefore been hampered by lack of material. This 
situation is improving, with metastatic samples taken post-mortem 
in systematic approaches such as the expanding “warm autopsy” 
program developed at the University of Michigan by Rubin, 
Pienta, and colleagues27 and recently the move to biopsy metastatic 
tumours from living patients, as exemplified in the landmark paper 
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from Robinson et al. using both WES and transcriptomic sequenc-
ing to characterize genetic lesions in 150 metastatic CRPC patients, 
both at bone and soft tissue metastatic sites28. Also, in recent years, 
there has been a move towards non-invasive sampling (liquid biop-
sies such as plasma, serum, urine, and semen) to obtain samples for 
WES analysis and biomarkers in general. For example, Mutaza and 
colleagues performed WES on circulating cell-free tumour DNA 
(ccfDNA) obtained from the plasma of patients29. The study iden-
tified a number of mutations associated with drug resistance, e.g. 
an activating mutation in phosphatidylinositol-4,5-bisphosphate  
3-kinase (PIK3CA) found following paclitaxel treatment. The abil-
ity to use liquid biopsies in the prostate field will circumvent issues 
of material availability and is an important development in the field 
of WES use for personalised medicine.

Identification of gene alterations associated with 
prostate cancer susceptibility
Since familial PCa was first described in the 1950s30, there has 
been a strong search for hereditary mutations linked with the occur-
rence of the disease. For example, genome-wide association studies 
(GWAS) and single nucleotide polymorphism (SNP) arrays have 
identified more than 100 PCa susceptibility loci31,32. The majority 
of these SNPs are located in non-coding regions, and bioinformatic 
approaches have been used to identify candidate genes affected by 
these variants33.

WES has also been used to identify genetic variants in coding 
regions that correlate with PCa predisposition. The G84E muta-
tion in the homeobox transcription factor HOXB13 is an example 
of such a SNP strongly associated with early onset familial PCa, 
confirmed through parallel targeted sequencing of germline DNA 
from 94 unrelated PCa patients and their families34–36. Similarly, 
both BRCA1 and BRCA2 have been linked to PCa predisposi-
tion, although no specific SNP has been identified, rather a variety 
of genetic alterations (e.g. protein-truncating mutations, in-frame 
deletions, and missense variants) in the two genes that cause loss 
of protein function37,38. The IMPACT study showed, in fact, that 
targeting prostate-specific antigen (PSA) screening to men bearing 
BRCA mutations identified a higher proportion with PCa and that 
BRCA mutation-positive men are more likely to have an aggressive 
form of the disease39.

Rand et al.40 compared the exomes of 2165 PCa cases and 2034 
controls of African ancestry with the aim of identifying protein-
coding variations that affect disease risk in this population. Among 
the significant associations identified were mutations in Secreted 
Protein Acidic and Rich in Cysteine-Like 1 (SPARCL1) and Protein 
Tyrosine Phosphatase, Receptor Type, R (PTPRR). SPARCL1 has 
been shown to have tumour suppressor activity41, and the alanine 
to aspartic acid substitution at amino acid 49 is associated with 
reduced PCa risk (odds ratio [OR] = 0.78, p = 1.8 × 10-6). In con-
trast, the substitution identified in PTPRR (Val239Ile), an AR target 
gene and regulator of the RAS/ERK1/2 pathway42, was associated 
with increased risk (OR = 1.62, p = 2.5 × 10-5). In another WES 
study of individuals from families with three or more affected indi-
viduals, it is notable that several of the changes associated with 
PCa were in genes linked to DNA damage repair, including three 

poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) 
genes43; this is especially interesting given recent reports of clinical 
benefit conferred by PARP inhibitors in PCa patients with defects 
in DNA-repair genes44.

Gene alterations associated with prostate cancer 
development/progression
A number of genetic alterations have been correlated with PCa 
development and progression. Perhaps unsurprisingly, the recent 
comprehensive profiling study of metastatic CRPC using WES 
and transcriptomic sequencing found mutations in genes in the AR 
signalling pathway in over 71% of cases: the majority were in the 
AR gene itself28. Since Taplin et al.’s original report of AR mutation 
and Visakorpi et al.’s report of AR amplification in advanced PCa, 
many more have been published45,46. These alterations are rare in 
early stages of the disease and appear in response to selective pres-
sure resulting from the hormone therapies administered, allowing 
the receptor to continue to drive growth in CRPC10,47–53. There are 
many reports of missense mutations leading to amino acid substitu-
tions, usually within the ligand-binding region, which broaden ligand  
specificity to allow activation by, for example, adrenal androgens,  
glucocorticoids, and even therapeutic antiandrogens54–58. More 
recently, constitutively active AR splice variants have been identified, 
which circumvent the requirement for ligand59,60. To date, at least 
20 such variants have been described, all of which lack the ligand- 
binding domain, are nuclear in the absence of ligand, and have been 
reported to have constitutive ligand-independent activity, although 
some studies suggest they still require the presence of the full-length 
receptor for activity60–64. As well as alterations of AR, mutations of 
other components of the AR signalling pathway have been found to 
correlate with disease progression. In their landmark study, Grasso 
et al. compared the exomes of 50 heavily treated metastatic CRPC 
tumours with 11 high-grade treatment-naïve non-metastatic tumours65, 
and a number of genes encoding proteins that interact with, and/or 
regulate the activity of, the AR were found to be altered. For example, 
mixed-lineage leukemia protein 2/histone-lysine N-methyltransferase 
2D (MLL2/KMT2D), a histone-modifying enzyme that interacts 
with the AR, was mutated in 8.6% of cancers. Alterations were also 
found in FOXA1 (3.4% of cases), a pioneer factor that de-compacts 
DNA allowing genomic access of nuclear receptors, including 
the AR66. The majority of FOXA1 mutations and indels identified 
were in the carboxy-terminal transactivation domain, and func-
tional assays demonstrated that these alterations enhanced tumour 
growth. In support of other studies, AR mutations and an increase 
in copy number were also identified in the majority of patients 
with advanced disease65. In addition, the recent Robinson et al. 
paper highlighted that 71.3% of metastatic CRPC tumours carried 
AR pathway mutations, the majority in the AR itself but others in e.g. 
AR cofactors (NCoR1/2) and, again, the pioneer factor FOXA128.

The gene often cited as most frequently mutated in primary PCa, 
encoding Speckle-type POZ protein (SPOP), is mutated in over 10% 
of primary prostate tumours67. Mutations in this gene appear early 
in development and impact the ability of the cell to repair DNA 
damage, leading to genomic instability68. Other targets of SPOP 
include the AR and the ERG oncogene, confirming the importance 
of this gene in driving tumour progression69.
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Phosphatase and Tensin homolog (PTEN) is found mutated at a 
similar frequency in primary PCa (10%), while PTEN deletion 
occurs in up to 70% of surgically treated cancers and over 60% of 
metastatic prostate tumours70–73. PTEN mutations or copy loss leads 
to increased PI3K/Akt signalling, which translates into cell survival 
and proliferation, e.g. through ligand-independent activation of 
the AR signaling pathway74. It has been hypothesised that PTEN  
deletion creates genomic instability that then facilitates other  
alterations, e.g. the TMPRSS-ERG fusion commonly found in 
PCa75,76. The TMPRSS-ERG gene originates from fusion between 
the TMPRSS2 promoter, which is androgen responsive, and the 
ERG gene77. ERG is a member of the ETS family of transcription 
factors, which has roles in numerous processes including cell prolif-
eration, apoptosis, differentiation, angiogenesis, and invasiveness. 
This gene fusion causes the oncogene ERG to be under the control 
of the androgen inducible TMPRSS2 promoter, which appears to 
have a subsequent bearing upon tumour progression78. Although 
ERG is the most common fusion partner, other ETS genes (nota-
bly ETV1 and ETV5) can be fused to the TMPRS22 promoter in 
prostate tumours, and also mutations in ETS gene family members 
have been identified in tumours, prompting speculation that some 
of these may have tumour suppressive function65,79.

Loss of function of tumour suppressors is also a common event 
in PCa development and progression, and those frequently lost are 
p53, retinoblastoma (Rb), and NK3 transcription factor related, 

locus 1 (NKX3.1)80–82. Dysregulation of the tumour suppressor p53 
is rarer in PCa than other tumour types, at around 5–10% in primary 
tumours, but increases to around 50% in metastatic CRPC28,67,83.  
A recent study, using candidate gene exome sequencing, suggested 
that patients with dominant negative p53 mutations had the worst 
outcome, and this feature by itself has independent prognostic  
relevance for patients84. NKX3.1 is an androgen-regulated gene 
known to regulate prostate organogenesis during embryogenesis 
and is expressed throughout adult life, where it regulates ductal 
function and secretion85. Complete loss of NKX3.1 expression is 
evident in 5% of benign prostatic hyperplasias, 20% of high-grade 
prostatic intraepithelial neoplasias, 34% of hormone-refractory PCa, 
and 78% of metastases, supporting a role in disease progression65,82. 
In contrast to p53 and Rb, NKX3.1 tumour suppressor activity is 
restricted to the prostate and its loss of activity is usually due to 
absent protein expression rather than inactivating mutations86.

When comparing WES studies, some common alterations are 
evident. Taking the top 30 hits each from two recent comparable 
exome studies of advanced metastatic PCa, 17 genes were found 
to be altered in both studies28,65 (Figure 1). For example, alterations 
in AR, TP53, ETS fusion, PTEN, and RB1 were common to both 
studies. However, a number of other alterations were found in only 
one study, some with a relatively high incidence rate (e.g. Grasso  
et al. found CYP11B1 to be altered in 20% of patients65). The dis-
crepancies between studies are likely to be resolved as the number 

Figure 1. Common genetic alterations associated with advanced metastatic prostate cancer identified in two major whole-exome 
sequencing studies. The top 30 genetic alterations found in each of the studies by Robinson et al. and Grasso et al.28,65 were compared.
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of tumours sequenced increases but are also likely to represent 
the significant heterogeneity associated with PCa. Inevitably, 
key driver mutations will be found in multiple studies. Further  
comparison with other larger sequencing studies such as the 
100,000 human genome project87 will aid in the identification of 
the key/driver mutations and variants important in PCa initiation 
or progression, as these will be enriched in PCa compared to other 
diseases and the general population.

The use of whole-exome sequencing for personalised 
medicine
There is an urgent need to stratify patients according to which ther-
apeutic is likely to be most effective, to increase drug efficacy, and 
to reduce over-treatment and unnecessary side effects. WES holds 
great promise in this regard and has already been demonstrated to 
be a useful tool in terms of determining the cause of resistance to 
therapeutics or indeed why certain unconventional treatments may 
benefit patients with a particular cancer for which they would not 
normally be given. An example of this was an unexpected finding in 
a study conducted by Beltran and colleagues88, which used WES to 
analyse the exomes of 97 patients with a range of metastatic cancers. 
One of the tumours analysed was from a PCa patient found to have 
an exceptional response to cisplatin treatment. Exome sequencing 
identified that the DNA repair protein FANCA had reduced expres-
sion and activity as a result of somatic hemizygous deletion and 
a partial loss of function as a result of a germline missense muta-
tion in the second allele; subsequent assays demonstrated that loss 
of FANCA function was associated with platinum hypersensitiv-
ity, thus providing a rationale for the patient’s clinical response to 
an unconventional treatment. The widespread application of pro-
spective WES in personalised medicine was also demonstrated 
in this study, since the authors were able to identify therapeutics 
(approved or in development), for 94% of the patients, expected 
to be effective given the exome profile generated88. Robinson et al. 
reported a similar rate of “actionable” mutations in their study of 
metastatic CRPC, i.e. mutations on the basis of which informed 
treatment advice could be offered, including BRCA or ATM muta-
tions that indicate use of PARP inhibitors28. To date, each exome or 
transcriptome sequencing study of the prostate identifies a number 
of mutations unique to that study, while also a notable number of  

common mutations and/or affected genes. This provides both 
evidence for the key pathways and driver mutations in PCa and  
potential information leading to the effective application of a wide 
range of therapeutics.

Concluding remarks
The launch of the International Cancer Genome Consortium89 
(https://icgc.org) in 2008 paved the way for genome studies on over 
50 cancer types and through the use of sequencing approaches, 
including WES, has significantly improved our understanding of 
the genomic, transcriptomic, and epigenomic changes associated 
with different tumour types. Repositories such as this are provid-
ing a valuable resource for researchers in the field. In comparison 
to complete genome sequencing, WES provides information only 
about alterations in the coding sequence; however, it is cost effec-
tive and the reduced data analysis associated with WES means 
that it is likely to continue to be a valuable tool for PCa research. 
It also holds great promise in the clinic, having the potential to 
assist and inform personalised medicine for men with the disease. 
Undoubtedly in the future, as transcriptomic approaches become 
more widely used, they will lead to similar advances relating to the 
non-coding portion of the genome; microRNAs, long non-coding 
RNAs, other non-coding RNAs, and epigenetic changes are also 
likely to yield markers for tumour classification as well as action-
able mutations. Despite the seemingly unlimited potential of WES, 
the frequent lack of knowledge of the functional consequences of 
such gene alterations is an issue that requires addressing in subse-
quent functional studies. These will be invaluable in characteris-
ing the phenotypic consequences of these gene alterations and are 
likely to yield findings that can be exploited for therapeutic gain.
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