440 research outputs found

    Perceptions of animal physiotherapy amongst Irish veterinary surgeons

    Get PDF
    The aim of this study was to investigate veterinary surgeons' perceptions, knowledge and use of animal physiotherapy in the Republic of Ireland. A questionnaire was developed and sent to 200 veterinary surgeons, of which 97 were returned. Results indicated that 77 (79%) of respondents were aware of animal physiotherapists. Common sources of information included veterinary colleagues, owners and professional journals, with physiotherapists themselves and undergraduate training being less commonly cited. Awareness of animal physiotherapy was greatest amongst those working in equine practice (χ2 = 5.7, df 1, p = 0.017); they were more knowledgeable about its techniques (t = 2.806, df 75, p = 0.006) and more likely to refer (χ2 = 48.36, df 1, p = 0.0001). Seventy-four respondents (96%) thought that more research was necessary to increase the evidence base for animal physiotherapy. If this branch of physiotherapy is to develop, there needs to be increased interaction and co-operation between veterinary surgeons and chartered animal physiotherapists

    Mineral magnetism of dusty olivine:A credible recorder of pre-accretionary remanence

    Get PDF
    The magnetic properties of olivine-hosted Fe-Ni particles have been studied to assess the potential of “dusty olivine” to retain a pre-accretionary remanence in chondritic meteorites. Both body-centered (bcc) and face-centered cubic (fcc) Fe-Ni phases were formed by reduction of a terrestrial olivine precursor. The presence of Ni complicates the magnetic properties during heating and cooling due to the fcc-bcc martensitic transition. First-order reversal curve (FORC) diagrams contain a central ridge with a broad coercivity distribution extending to 600 mT, attributed to non-interacting single-domain (SD) particles, and a “butterfly” structure extending to 250 mT, attributed to single-vortex (SV) states. SD and SV states were imaged directly using electron holography. The location of the SD/SV boundary is broadly consistent with theoretical predictions. A method to measure the volume of individual SD particles using electron holography is presented. Combining the volume information with constraints on coercivity, we calculate the thermal relaxation characteristics of the particles and demonstrate that the high-coercivity component of remanance would remain stable for 4.6 Ga, even at temperatures approaching the Curie temperature of pure Fe. The high coercivity of the particles, together with the chemical protection offered by the surrounding olivine, is likely to make them resistant to shock remagnetization, isothermal remagnetization and terrestrial weathering, making dusty olivine a credible recorder of pre-accretionary magnetic fields

    Multidimensional Facets of Perceived Risk in Mobile Travel Booking

    Get PDF
    Despite the growing prevalence of smartphones in daily life and travel context, travellers still perceive an extent of risk associated with using their smartphone to book travel products. In order to alleviate or reduce perceived risk, it is important to better understand the dimensions of and the factors that contribute to perceived risk. This study analysed 411 responses from an online panel to examine perceived risk in mobile travel booking and identified the following facets: time risk, financial risk, performance risk, privacy/security risk, psychological risk, physical risk, and device risk. Several antecedents of perceived risk were identified. Perceived collection of personal information via smartphones contributes positively, while consumer innovativeness, trust, and visibility contribute negatively to perceived risk. Further, the predictive validity of perceived risk is confirmed as it significantly explains perceived usefulness, attitude, and behavioural intention in mobile travel booking. Implications to manage perceived risk and its antecedents are provided

    Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1

    Get PDF
    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination (PSD) down to an electron-equivalent energy of 20 keV. In the surface dataset using a triple-coincidence tag we found the fraction of beta events that are misidentified as nuclear recoils to be <1.4×10−7<1.4\times 10^{-7} (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement with only a double-coincidence tag. The combined data set contains 1.23×1081.23\times10^8 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the electronic recoil contamination is <2.7×10−8<2.7\times10^{-8} (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe PSD parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approx. 10−1010^{-10} for an electron-equivalent energy threshold of 15 keV for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10−4610^{-46} cm2^2, assuming negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic

    Stretch goals and the distribution of organizational performance

    Get PDF
    Many academics, consultants, and managers advocate stretch goals to attain superior organizational performance. However, existing theory speculates that, although stretch goals may benefit some organizations, they are not a “rule for riches” for all organizations. To address this speculation, we use two experimental studies to explore the effects on the mean, median, variance, and skewness of performance of stretch compared with moderate goals. Participants were assigned moderate or stretch goals to manage a widely used business simulation. Compared with moderate goals, stretch goals improve performance for a few participants, but many abandon the stretch goals in favor of lower self-set goals, or adopt a survival goal when faced with the threat of bankruptcy. Consequently, stretch goals generate higher performance variance across organizations and a right-skewed performance distribution. Contrary to conventional wisdom, we find no positive stretch goal main effect on performance. Instead, stretch goals compared with moderate goals generate large attainment discrepancies that increase willingness to take risks, undermine goal commitment, and generate lower risk-adjusted performance. The results provide a richer theoretical and empirical appreciation of how stretch goals influence performance

    Rotating tomography Paris-Edinburgh cell:a novel portable press for micro-tomographic 4-D imaging at extreme pressure/temperature/stress conditions

    Get PDF
    International audienceThis paper presents details of instrumental development to extend synchrotron X-ray microtomography techniques to in situ studies under static compression (high pressure), shear stress or the both conditions at simultaneous high temperatures. To achieve this, a new rotating tomography Paris–Edinburgh cell has been developed. This ultra-compact portable device easily and successfully adapted to various multi-modal synchrotron experimental set-up at ESRF, SOLEIL and DIAMOND is explained in detail. An in-depth description of proof of concept first experiments performed on a high resolution imaging beamline is then given, which illustrate the efficiency of the set-up and the data quality that can be obtained

    Strategic implications of valuation methods

    Get PDF
    Author's OriginalStrategy is ultimately aimed at creating shareholder value, placing valuation in a central role linking finance and strategy. Focusing on growth options, this paper uses a unique "perfect information" model to examine, from a strategy point of view, the relationship between the market value of the firm and its intrinsic, or DCF, value. Although the research is at the level of the firm, the results have implications at the level of individual strategies and projects, since a firm can be conceptualized as a collection of projects. The findings highlight the relationship between the value of growth options and macroeconomic conditions, industry characteristics, and firm-specific factors. A revised version of this paper has since been published in the journal Advances in Strategic Management. Please use this version in your citations.Alessandri, T. M., Lander, D. M., & Bettis, R. A. (2007), Strategic Implications of Valuation: Evidence from Valuing Growth Options, in Professor Brian Silverman (ed.) Real Options Theory. Advances in Strategic Management, 24, 459-48

    Deformation-aided segregation of Fe-S liquid from olivine under deep Earth conditions: Implications for core formation in the early solar system

    Get PDF
    The planets and larger rocky bodies of the inner solar system are differentiated, and consist of metallic, iron-rich cores surrounded by thick shells of silicate. Core formation in these bodies, i.e. the segregation of metal from silicate, was a key process in the early solar system, and one which left a lasting geochemical signature. It is commonly assumed that extensive silicate melting and formation of deep magma oceans was required to initiate core formation, due to the inability of iron-rich melts to segregate from a solid silicate matrix. Here we assess the role of deformation in aiding segregation of core-forming melts from solid silicate under conditions of planetary deep interiors. Low-strain rate, high-pressure/ temperature deformation experiments and high-resolution 2-D and 3-D textural analysis demonstrate that deformation fundamentally alters iron-rich melt geometry, promoting wetting of silicate grain boundaries and formation of extensive micron to sub-micron width Fe-rich melt bands. Deformation-aided Fe-S melt networks noted here contrast those observed in higher finite strain experiments conducted at lower pressure, and may reveal either an alternative mechanism for melt segregation at higher pressures, or an early stage process of melt segregation. Results suggest, however, that core-mantle chemical equilibration cannot be assumed in models of planetary formation, and that instead, the chemistry of rocky planets may record a complex, multi-stage process of core formation.This work was supported by the University Of Edinburgh (Principal’s Career Development studentship), the Natural Environment Research Council under NE/I016333/1, Science and Technology Facilities Council, European Synchrotron Radiation Facility, and the EPSRC for the Manchester X-ray Imaging Facility under EP/ F007906/1 and EP/F028431/1
    • 

    corecore