324 research outputs found

    Economical ground data delivery

    Get PDF
    Data delivery in the Deep Space Network (DSN) involves transmission of a small amount of constant, high-priority traffic and a large amount of bursty, low priority data. The bursty traffic may be initially buffered and then metered back slowly as bandwidth becomes available. Today both types of data are transmitted over dedicated leased circuits. The authors investigated the potential of saving money by designing a hybrid communications architecture that uses leased circuits for high-priority network communications and dial-up circuits for low-priority traffic. Such an architecture may significantly reduce costs and provide an emergency backup. The architecture presented here may also be applied to any ground station-to-customer network within the range of a common carrier. The authors compare estimated costs for various scenarios and suggest security safeguards that should be considered

    The engine reformer: Syngas production in an engine for compact gas-to-liquids synthesis

    Get PDF
    Methane (CH[subscript 4]) reforming was carried out in an internal combustion engine (an “engine reformer”). We successfully produced syngas from the partial oxidation of natural gas in the cylinder of a diesel engine that was reconfigured to perform spark ignition. Performing the reaction in an engine cylinder allows some of the exothermicity to be captured as useful work. Intake conditions of 110 kPa and up to 480 °C allowed low cycle-to-cycle variability (COV[subscript nimep]  2.4, but < 1 mg/L below these equivalence ratios. These results demonstrate that the engine reformer could be a key component of a compact gas-to-liquids synthesis plant by highlighting the operating conditions under which high gas conversion, high H[subscript 2]-to-CO ratios close to 2.0, and low soot production are possible.United States. Advanced Research Projects Agency-Energy (Award DE-AR0000506)Research Triangle InitiativeMIT Energy InitiativeMassachusetts Institute of Technology. Tata Center for Technology and Desig

    Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification

    Get PDF
    Background HER2 is overexpressed and amplified in approximately 15% of invasive breast cancers, and is the molecular target and predictive marker of response to anti-HER2 agents. In a subset of these cases, heterogeneous distribution of HER2 gene amplification can be found, which creates clinically challenging scenarios. Currently, breast cancers with HER2 amplification/overexpression in just over 10% of cancer cells are considered HER2-positive for clinical purposes; however, it is unclear as to whether the HER2-negative components of such tumors would be driven by distinct genetic alterations. Here we sought to characterize the pathologic and genetic features of the HER2-positive and HER2-negative components of breast cancers with heterogeneous HER2 gene amplification and to define the repertoire of potential driver genetic alterations in the HER2-negative components of these cases.Results We separately analyzed the HER2-negative and HER2-positive components of 12 HER2 heterogeneous breast cancers using gene copy number profiling and massively parallel sequencing, and identified potential driver genetic alterations restricted to the HER2-negative cells in each case. In vitro experiments provided functional evidence to suggest that BRF2 and DSN1 overexpression/amplification, and the HER2 I767M mutation may be alterations that compensate for the lack of HER2 amplification in the HER2-negative components of HER2 heterogeneous breast cancers.Conclusions Our results indicate that even driver genetic alterations, such as HER2 gene amplification, can be heterogeneously distributed within a cancer, and that the HER2-negative components are likely driven by genetic alterations not present in the HER2-positive components, including BRF2 and DSN1 amplification and HER2 somatic mutations

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s}=1.96 TeV using Lepton + Jets Events with Secondary Vertex b-tagging

    Full text link
    We present a measurement of the ttbar production cross section using events with one charged lepton and jets from ppbar collisions at a center-of-mass energy of 1.96 TeV. In these events, heavy flavor quarks from top quark decay are identified with a secondary vertex tagging algorithm. From 162 pb-1 of data collected by the Collider Detector at Fermilab, a total of 48 candidate events are selected, where 13.5 +- 1.8 events are expected from background contributions. We measure a ttbar production cross section of 5.6^{+1.2}_{-1.1} (stat.) ^{+0.9}_{0.6} (syst.) pb.Comment: 28 pages, 20 figures. Published in Physical Review

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Nomenclature for kidney function and disease: report of a Kidney Disease:Improving Global Outcomes (KDIGO) Consensus Conference

    Get PDF
    The worldwide burden of kidney disease is rising, but public awareness remains limited, underscoring the need for more effective communication by stakeholders in the kidney health community. Despite this need for clarity, the nomenclature for describing kidney function and disease lacks uniformity. In June 2019, Kidney Disease: Improving Global Outcomes (KDIGO) convened a Consensus Conference with the goal of standardizing and refining the nomenclature used in the English language to describe kidney function and disease, and of developing a glossary that could be used in scientific publications. Guiding principles of the conference were that the revised nomenclature should be patient-centered, precise, and consistent with nomenclature used in the KDIGO guidelines. Conference attendees reached general consensus on the following recommendations: (i) to use "kidney" rather than "renal" or "nephro-" when referring to kidney disease and kidney function; (ii) to use "kidney failure" with appropriate descriptions of presence or absence of symptoms, signs, and treatment, rather than "end-stage kidney disease"; (iii) to use the KDIGO definition and classification of acute kidney diseases and disorders (AKD) and acute kidney injury (AKI), rather than alternative descriptions, to define and classify severity of AKD and AKI; (iv) to use the KDIGO definition and classification of chronic kidney disease (CKD) rather than alternative descriptions to define and classify severity of CKD; and (v) to use specific kidney measures, such as albuminuria or decreased glomerular filtration rate (GFR), rather than "abnormal" or "reduced" kidney function to describe alterations in kidney structure and function. A proposed 5-part glossary contains specific items for which there was general agreement. Conference attendees acknowledged limitations of the recommendations and glossary, but they considered standardization of scientific nomenclature to be essential for improving communication

    Coronavirus Papain-like Proteases Negatively Regulate Antiviral Innate Immune Response through Disruption of STING-Mediated Signaling

    Get PDF
    Viruses have evolved elaborate mechanisms to evade or inactivate the complex system of sensors and signaling molecules that make up the host innate immune response. Here we show that human coronavirus (HCoV) NL63 and severe acute respiratory syndrome (SARS) CoV papain-like proteases (PLP) antagonize innate immune signaling mediated by STING (stimulator of interferon genes, also known as MITA/ERIS/MYPS). STING resides in the endoplasmic reticulum and upon activation, forms dimers which assemble with MAVS, TBK-1 and IKKε, leading to IRF-3 activation and subsequent induction of interferon (IFN). We found that expression of the membrane anchored PLP domain from human HCoV-NL63 (PLP2-TM) or SARS-CoV (PLpro-TM) inhibits STING-mediated activation of IRF-3 nuclear translocation and induction of IRF-3 dependent promoters. Both catalytically active and inactive forms of CoV PLPs co-immunoprecipitated with STING, and viral replicase proteins co-localize with STING in HCoV-NL63-infected cells. Ectopic expression of catalytically active PLP2-TM blocks STING dimer formation and negatively regulates assembly of STING-MAVS-TBK1/IKKε complexes required for activation of IRF-3. STING dimerization was also substantially reduced in cells infected with SARS-CoV. Furthermore, the level of ubiquitinated forms of STING, RIG-I, TBK1 and IRF-3 are reduced in cells expressing wild type or catalytic mutants of PLP2-TM, likely contributing to disruption of signaling required for IFN induction. These results describe a new mechanism used by CoVs in which CoV PLPs negatively regulate antiviral defenses by disrupting the STING-mediated IFN induction
    • …
    corecore