2,950 research outputs found

    Mating system of the Eurasian badger, Meles meles, in a high density population

    Get PDF
    Badgers are facultatively social, forming large groups at high density. Group-living appears to have high reproductive costs for females, and may lead to increased levels of inbreeding. The extent of female competition for reproduction has been estimated from field data, but knowledge of male reproductive success and the extent of extra-group paternity remains limited. Combining field data with genetic data (16 microsatellite loci), we studied the mating system of 10 badger social groups across 14 years in a high-density population. From 923 badgers, including 425 cubs, we were able to assign maternity to 307 cubs, with both parents assigned to 199 cubs (47%) with 80% confidence, and 14% with 95% confidence. Age had a significant effect on the probability of reproduction, seemingly as a result of a deficit of individuals aged two years and greater than eight years attaining parentage. We estimate that approximately 30% of the female population successfully reproduced in any given year, with a similar proportion of the male population gaining paternity across the same area. While it was known there was a cost to female reproduction in high density populations, it appears that males suffer similar, but not greater, costs. Roughly half of assigned paternity was attributed to extra-group males, the majority of which were from neighbouring social groups. Few successful matings occurred between individuals born in the same social group (22%). The high rate of extra-group mating, previously unquantified, may help reduce inbreeding, potentially making philopatry a less costly strategy

    Bayesian correlated clustering to integrate multiple datasets

    Get PDF
    Motivation: The integration of multiple datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct – but often complementary – information. We present a Bayesian method for the unsupervised integrative modelling of multiple datasets, which we refer to as MDI (Multiple Dataset Integration). MDI can integrate information from a wide range of different datasets and data types simultaneously (including the ability to model time series data explicitly using Gaussian processes). Each dataset is modelled using a Dirichlet-multinomial allocation (DMA) mixture model, with dependencies between these models captured via parameters that describe the agreement among the datasets. Results: Using a set of 6 artificially constructed time series datasets, we show that MDI is able to integrate a significant number of datasets simultaneously, and that it successfully captures the underlying structural similarity between the datasets. We also analyse a variety of real S. cerevisiae datasets. In the 2-dataset case, we show that MDI’s performance is comparable to the present state of the art. We then move beyond the capabilities of current approaches and integrate gene expression, ChIP-chip and protein-protein interaction data, to identify a set of protein complexes for which genes are co-regulated during the cell cycle. Comparisons to other unsupervised data integration techniques – as well as to non-integrative approaches – demonstrate that MDI is very competitive, while also providing information that would be difficult or impossible to extract using other methods

    Bar-driven dark halo evolution: a resolution of the cusp--core controversy

    Get PDF
    Simulations predict that the dark matter halos of galaxies should have central cusps, while those inferred from observed galaxies do not have cusps. We demonstrate, using both linear perturbation theory and n-body simulations, that a disk bar, which should be ubiquitous in forming galaxies, can produce cores in cuspy CDM dark matter profiles within five bar orbital times. Simulations of forming galaxies suggest that one of Milky Way size could have a 10 kpc primordial bar; this bar will remove the cusp out to approximately 5 kpc in approximately 1.5 gigayears, while the disk only loses approximately 8% of its original angular momentum. An inner Lindblad-like resonance couples the rotating bar to orbits at all radii through the cusp, transferring the bar pattern angular momentum to the dark matter cusp, rapidly flattening it. This resonance disappears for profiles with cores and is responsible for a qualitative difference in bar driven halo evolution with and without a cusp. This bar induced evolution will have a profound effect on the structure and evolution of almost all galaxies. Hence, both to understand galaxy formation and evolution and to make predictions from theory it is necessary to resolve these dynamical processes. Unfortunately, correctly resolving these important dynamical processes in ab initio calculations of galaxy formation is a daunting task, requiring at least 4,000,000 halo particles using our SCF code, and probably requiring many times more particles when using noisier tree, direct summation, or grid based techniques, the usual methods employed in such calculations.Comment: 7 pages, 3 figure

    Association between Landscape Factors and Spatial Patterns of Plasmodium knowlesi Infections in Sabah, Malaysia.

    Get PDF
    The zoonotic malaria species Plasmodium knowlesi has become the main cause of human malaria in Malaysian Borneo. Deforestation and associated environmental and population changes have been hypothesized as main drivers of this apparent emergence. We gathered village-level data for P. knowlesi incidence for the districts of Kudat and Kota Marudu in Sabah state, Malaysia, for 2008-2012. We adjusted malaria records from routine reporting systems to reflect the diagnostic uncertainty of microscopy for P. knowlesi. We also developed negative binomial spatial autoregressive models to assess potential associations between P. knowlesi incidence and environmental variables derived from satellite-based remote-sensing data. Marked spatial heterogeneity in P. knowlesi incidence was observed, and village-level numbers of P. knowlesi cases were positively associated with forest cover and historical forest loss in surrounding areas. These results suggest the likelihood that deforestation and associated environmental changes are key drivers in P. knowlesi transmission in these areas

    Confirmation of low genetic diversity and multiple breeding females in a social group of Eurasian badgers from microsatellite and field data

    Get PDF
    The Eurasian badger ( Meles meles ) is a facultatively social carnivore that shows only rudimentary co-operative behaviour and a poorly defined social hierarchy. Behavioural evidence and limited genetic data have suggested that more than one female may breed in a social group. We combine pregnancy detection by ultrasound and microsatellite locus scores from a well-studied badger population from Wytham Woods, Oxfordshire, UK, to demonstrate that multiple females reproduce within a social group. We found that at least three of seven potential mothers reproduced in a group that contained 11 reproductive age females and nine offspring. Twelve primers showed variability across the species range and only five of these were variable in Wytham. The microsatellites showed a reduced repeat number, a significantly higher number of nonperfect repeats, and moderate heterozygosity levels in Wytham. The high frequency of imperfect repeats and demographic phenomena might be responsible for the reduced levels of variability observed in the badger

    Alloparental behaviour and long-term costs of mothers tolerating other members of the group in a plurally breeding mammal

    No full text
    Cooperative-breeding studies tend to focus on a few alloparental behaviours in highly cooperative species exhibiting high reproductive skew and the associated short-term, but less frequently long-term, fitness costs. We analysed a suite of alloparental behaviours (assessed via filming) in a kin-structured, high-density population of plurally breeding European badgers, Meles meles, which are not highly cooperative. Group members, other than mothers, performed alloparental behaviour; however, this was not correlated with their relatedness to within-group young. Furthermore, mothers babysat, allogroomed cubs without reciprocation, and allomarked cubs more than other members of the group (controlling for observation time). For welfare reasons, we could not individually mark cubs; however, the number observed pre-independence never exceeded that trapped. All 24 trapped cubs, in three filmed groups, were assigned both parents using 22 microsatellites. Mothers may breed cooperatively, as the time they babysat their assigned, or a larger, litter size did not differ. Furthermore, two mothers probably allonursed, as they suckled more cubs than their assigned litter size. An 18-year genetic pedigree, however, detected no short-term (litter size; maternal survival to the following year) or long-term (offspring breeding probability; offspring lifetime breeding success) fitness benefits with more within-group mothers or other members of the group. Rather, the number of other members of the group (excluding mothers) correlated negatively with long-term fitness. Mothers may tolerate other members of the group, as nonbreeders undertook more digging. Our study highlights that alloparental care varies on a continuum from that seen in this high-density badger population, where alloparenting behaviour is minimal, through to species where alloparental care is common and provides fitness benefits. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved
    • …
    corecore