326 research outputs found

    Routes to achieving sustainable intensification in simulated dairy farms: The importance of production efficiency and complimentary land uses

    Get PDF
    1.Sustainable intensification (SI) is a global challenge, aiming to increase food production whilst conserving biodiversity and ecosystem services. This is contrary to the observed trend of agricultural intensification degrading environmental quality. We developed a framework integrating animal nutrition, crop yields, and biodiversity modelling to explore SI potential in multiple model dairy farming systems through varying crop composition to provide cattle feed rations. We then identified key drivers of biodiversity gain that may be applicable at a wider scale. 2.We developed multiple feed rations to meet the nutritional demands of a high-yielding, housed dairy herd. The land area required varied due to productivity and nutritional differences between crops, generating spare land. We used published biodiversity models to compare alpha- and beta-diversity of spiders and plants across 36 scenarios that used the spare land in different ways, for either biodiversity maximisation or additional production. 3.Alpha and beta-diversity for both taxa was greatest in scenarios that maximised spare land and utilised this for species-rich extensive grassland. However, commensurate biodiversity gains for plant alpha-diversity, and spider and plant beta-diversity (respectively 100%, 76% and 86% gain relative to that optimal scenario) were achievable when spare land was used for additional crop production. 4.Maximising compositional heterogeneity and adding complementary productive land uses to spared land were key to increasing production and beta-diversity, while adding species-rich productive land uses drove increasing production and alpha-diversity. 5.Synthesis and applications. This study indicates the potential for SI of dairy farming through manipulating feed rations to increase land-efficiency and spare land, which could then be used to enhance production and biodiversity. The optimum land composition depends on target goal(s) (e.g. maximising production and/or biodiversity). Greatest ‘win-wins’ were achieved through increasing land cover heterogeneity and selecting crops that complement each other in the species they support, highlighting the important role of heterogeneity in the crop matrix. Our study provides a framework that integrates production efficiency and biodiversity modelling to explore potential routes to achieve SI goals

    Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy

    Get PDF
    The transient response of bedrock rivers to a drop in base level can be used to discriminate between competing fluvial erosion models. However, some recent studies of bedrock erosion conclude that transient river long profiles can be approximately characterized by a transport‐limited erosion model, while other authors suggest that a detachment‐limited model best explains their field data. The difference is thought to be due to the relative volume of sediment being fluxed through the fluvial system. Using a pragmatic approach, we address this debate by testing the ability of end‐member fluvial erosion models to reproduce the well‐documented evolution of three catchments in the central Apennines (Italy) which have been perturbed to various extents by an independently constrained increase in relative uplift rate. The transport‐limited model is unable to account for the catchments’response to the increase in uplift rate, consistent with the observed low rates of sediment supply to the channels. Instead, a detachment‐limited model with a threshold corresponding to the field‐derived median grain size of the sediment plus a slope‐dependent channel width satisfactorily reproduces the overall convex long profiles along the studied rivers. Importantly, we find that the prefactor in the hydraulic scaling relationship is uplift dependent, leading to landscapes responding faster the higher the uplift rate, consistent with field observations. We conclude that a slope‐ dependent channel width and an entrainment/erosion threshold are necessary ingredients when modeling landscape evolution or mapping the distribution of fluvial erosion rates in areas where the rate of sediment supply to channels is low

    Dusty core disease (DuCD): expanding morphological spectrum of RYR1 recessive myopathies

    Get PDF
    Several morphological phenotypes have been associated to RYR1-recessive myopathies. We recharacterized the RYR1-recessive morphological spectrum by a large monocentric study performed on 54 muscle biopsies from a large cohort of 48 genetically confirmed patients, using histoenzymology, immunohistochemistry, and ultrastructural studies. We also analysed the level of RyR1 expression in patients' muscle biopsies. We defined "dusty cores" the irregular areas of myofibrillar disorganisation characterised by a reddish-purple granular material deposition with uneven oxidative stain and devoid of ATPase activity, which represent the characteristic lesion in muscle biopsy in 54% of patients. We named Dusty Core Disease (DuCD) the corresponding entity of congenital myopathy. Dusty cores had peculiar histological and ultrastructural characteristics compared to the other core diseases. DuCD muscle biopsies also showed nuclear centralization and type1 fibre predominance. Dusty cores were not observed in other core myopathies and centronuclear myopathies. The other morphological groups in our cohort of patients were: Central Core (CCD: 21%), Core-Rod (C&R:15%) and Type1 predominance "plus" (T1P+:10%). DuCD group was associated to an earlier disease onset, a more severe clinical phenotype and a lowest level of RyR1 expression in muscle, compared to the other groups. Variants located in the bridge solenoid and the pore domains were more frequent in DuCD patients. In conclusion, DuCD is the most frequent histopathological presentation of RYR1-recessive myopathies. Dusty cores represent the unifying morphological lesion among the DuCD pathology spectrum and are the morphological hallmark for the recessive form of disease

    Microtubule-associated protein 6 mediates neuronal connectivity through Semaphorin 3E-dependent signalling for axonal growth.

    Get PDF
    Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding. We find that MAP6 deletion disrupts brain connectivity and is associated with a lack of post-commissural fornix fibres. MAP6 contributes to fornix development by regulating axonal elongation induced by Semaphorin 3E. We show that MAP6 acts downstream of receptor activation through a mechanism that requires a proline-rich domain distinct from its microtubule-stabilizing domains. We also show that MAP6 directly binds to SH3 domain proteins known to be involved in neurite extension and semaphorin function. We conclude that MAP6 is critical to interface guidance molecules with intracellular signalling effectors during the development of cerebral axon tracts

    One Health epidemic preparedness: Biosafety quality improvement training in Nigeria

    Get PDF
    Background and Aim: One of the key components of the O ne Health approach to epidemic preparedness is raising awareness and increasing the knowledge of emerging infectious diseases, prevention, and risk reduction. However, related research can involve significant risks to biosafety and biosecurity. For this purpose, we organized a multidisciplinary biosafety hands-on workshop to inform and increase the knowledge of infectious diseases and risk mitigation. This study aimed to describe the process and outcome of a hands-on biosafety training program using a One Health a pproach across a multidisciplinary and multi-specialty group in Nigeria. Materials and Methods: A face-to-face hands-on training for 48 participants was organized by the West African Center for Emerging Infectious Diseases (WAC-EID) at the Jos University Teaching Hospital, serving as a lead institution for the Nigeria project site. Topics covered included (1) an overview of the WAC-EID research; (2) overview of infection prevention and control; (3) safety in animal handling and restraint, sample collection, and processing; (4) safety in field studies including rodent, bird and bat handling; (5) safety practices in the collection of mosquito and other arthropod vectors; (6) personal protective equipment training (disinfection, donning and doffing); and (7) safety in sample collection, labeling, and transportation. The program was executed using a mixed method of slide presentations, practical hands-on sessions, and video demonstrations. Pre- and post-course evaluation assessments and evaluation measures were used to assess training. Results: A total of 48 trainees participated in this training, with 12 (25%), 16 (33.3%), 14 (29.2%), 6 (12.5%) categorized as ornithology, entomology, mammalogy, and clinical interest groups, respectively. The pass rate for the pre-test was 29.4%, while for the post-test, it was 57.1%, or a 28% improvement. 88.6% of the trainees rated the training as relevant to them. Conclusion: Didactic and hands-on biosafety training is relevant in this era of zoonotic epidemics and pandemic preparedness. During this training program, there was a clear demonstration of knowledge transfer that can change the current practices of participants and improve the safety of infectious diseases research

    White book on physical and rehabilitation medicine (PRM) in Europe. Chapter 10. Science and research in PRM: Specificities and challenges

    Get PDF
    In the context of the White Book of Physical and Rehabilitation Medicine (PRM), this paper deals with Research, the future of PRM. PRM students and specialists are mainly involved in biomedical research, investigating the biological processes, the causes of diseases, their medical diagnosis, the evaluation of their consequences on functioning, disability and health and the effects of health interventions at an individual and a societal level. Most of the current PRM research, often interdisciplinary, originates from applied research which, using existing knowledge, is directed towards specific goals. Translational medical research, research and development, implementation research and clinical impact research are in this field. PRM physicians, mainly master or PhD students, are nowadays increasing their participation in basic research and in pre-clinical trials. PRM physicians are involved in primary research, which is an original first hand research, but also in secondary research, which is the analysis and interpretation of primary research publications in a field, with a specific methodology. Secondary research remains an important activity of the UEMS PRM section and it will be the field of the new created Cochrane Rehabilitation. Secondary research with interest for persons with disabilities, will be developed world wide on the basis of evidence based medicine, with the participation of PRM physicians and of all other health and social professionals involved in rehabilitation. The development of research activities with interest for PRM in Europe is a challenge for the future, which has to be faced now. The European PRM schools, the European master and PhD program with their supporting research and clinical facilities, the European PRM organizations with their websites, the PRM scientific journals and European congresses are a strong basis to develop research activities, together with the development of Cochrane Rehabilitation field and of our cooperation with European high level research facilities, European and international scientific societies in different fields. PRM will be a leader in this field of research

    Nanoscale surface topography reshapes neuronal growth in culture

    Get PDF
    International audienceNeurons are sensitive to topographical cues provided either by in vivo or in vitro environments on the micrometric scale. We have explored the role of randomly distributed silicon nanopillars on primary hippocampal neurite elongation and axonal differentiation. We observed that neurons adhere on the upper part of nanopillars with a typical distance between adhesion points of about 500 nm. These neurons produce fewer neurites, elongate faster, and differentiate an axon earlier than those grown on flat silicon surfaces. Moreover, when confronted with a differential surface topography, neurons specify an axon preferentially on nanopillars. As a whole, these results highlight the influence of the physical environment in many aspects of neuronal growth

    An astrocyte-dependent mechanism for neuronal rhythmogenesis

    Full text link
    Communication between neurons rests on their capacity to change their firing pattern to encode different messages. For several vital functions, such as respiration and mastication, neurons need to generate a rhythmic firing pattern. Here we show in the rat trigeminal sensori-motor circuit for mastication that this ability depends on regulation of the extracellular Ca2+ concentration ([Ca2+]e) by astrocytes. In this circuit, astrocytes respond to sensory stimuli that induce neuronal rhythmic activity, and their blockade with a Ca2+ chelator prevents neurons from generating a rhythmic bursting pattern. This ability is restored by adding S100b, an astrocytic Ca2+-binding protein, to the extracellular space, while application of an anti-S100b antibody prevents generation of rhythmic activity. These results indicate that astrocytes regulate a fundamental neuronal property: the capacity to change firing pattern. These findings may have broad implications for many other neural networks whose functions depend on the generation of rhythmic activity
    corecore