41 research outputs found
Improving elevation resolution in phased-array inspections for NDT
The Phased Array Ultrasonic Technique (PAUT) offers great advantages over the conventional ultrasound technique (UT), particularly because of beam focusing, beam steering and electronic scanning capabilities. However, the 2D images obtained have usually low resolution in the direction perpendicular to the array elements, which limits the inspection quality of large components by mechanical scanning. This paper describes a novel approach to improve image quality in these situations, by combining three ultrasonic techniques: Phased Array with dynamic depth focusing in reception, Synthetic Aperture Focusing Technique (SAFT) and Phase Coherence Imaging (PCI). To be applied with conventional NDT arrays (1D and non-focused in elevation) a special mask to produce a wide beam in the movement direction was designed and analysed by simulation and experimentally. Then, the imaging algorithm is presented and validated by the inspection of test samples. The obtained images quality is comparable to that obtained with an equivalent matrix array, but using conventional NDT arrays and equipments, and implemented in real time.Fil: Brizuela, Jose David. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Camacho, J.. Consejo Superior de Investigaciones Científicas; EspañaFil: Cosarinsky, Guillermo Gerardo. Comisión Nacional de Energía Atómica; ArgentinaFil: Iriarte, Juan Manuel. Comisión Nacional de Energía Atómica; ArgentinaFil: Cruza, Jorge F.. Consejo Superior de Investigaciones Científicas; Españ
Improvement in the quality of ultrasonic images by applying spatial composition methods and using phased array systems
La técnica de ultrasonidos de Phased Array (PA) se ha convertido en una herramienta para la Evaluación No Destructiva (END) por imágenes muy utilizada en el sector industrial. La técnica PA permite realizar deflexiones y enfocar el haz de ultrasonidos en diferentes profundidades dentro del material, mediante el control electrónico de cada uno de los N elementos que componen el transductor o array, facilitando la realización de diversos barridos para generar imágenes en distintos formatos. Las imágenes de PA resultan muy eficientes en la detección de los defectos, siempre que éstos tengan una orientación favorable a la dirección del haz. Por lo tanto, es requisito establecer correctamente el posicionamiento del transductor y la configuración del barrido. No obstante, existen inconvenientes adicionales, tales como las pérdidas de calidad e intensidad en las indicaciones a medida que la detección se realiza con ángulos elevados. En estos casos, siempre resulta conveniente hacer exploraciones desde distintas posiciones y con diferentes rangos angulares para obtener información con diversidad espacial. Este trabajo presenta la composición espacial y coherente de imágenes PA capturadas con distintas orientaciones y posiciones sobre la pieza, para ser combinadas en una única imagen compuesta. Se ha creado un algoritmo genérico capaz de realizar una conversión de barrido utilizando interpolación bilineal, lográndose una imagen final de mayor calidad y precisión en el análisis cuantitativo de las indicaciones. La propuesta ha sido validada sobre componentes y en materiales que pueden componer piezas de uso nuclear.The Phased Array Ultrasonic Technique (PAUT) has become a widely used imaging tool for the Nondestructive Testing in the industrial field. The PAUT allows making deflections and focusing the ultrasound beam at different depths within the material, through an electronic control of each one of the N elements that make up the array transducer. Thus, several electronic sweeps can be performed to obtain images in different formats. The PAUT imaging is very efficient in detecting flaws whenever they have a favorable orientation relative to the beam direction. Therefore, it is necessary to establish the transducer position and set-up the scanning correctly. Nevertheless, there are some drawbacks such as quality and intensity losses in the data when the detection is made at high angles. For these reasons, it is necessary to perform exploration from different positions using different angular ranges to obtain information with spatial diversity. This work presents the spatial and coherent compounding of PAUT images, which have been captured with different orientations and in different positions related to the explored volume, to produce a single image. A generic algorithm was developed for performing a scanning conversion using the bilinear interpolation, which allows obtaining a high quality final image and more accuracy in the quantitative analysis of indications. The proposal has been validated on components and materials that can compose pieces of nuclear use.Fil: Quirós, Dante Patricio. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Brizuela, Jose David. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Desimone, Carlos Alberto. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Ramirez Daneri, Maria Silvana. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Comisión Nacional de Energía Atómica; Argentin
Non-destructive evaluation techniques for pressure vessels made of composite material
Los recipientes fabricados en materiales compuestos COPVs (Composite Overwrapped Pressure Vessels) son extensamente aplicados en la industria aeroespacial para contener líquidos a alta presión debido a sus elevadas propiedades mecánicas, además de ser un componente muy liviano. Consisten en una delgada estructura metálica (contenedor o liner) recubierta por un compuesto plástico, reforzado con fibras estructurales de carbono. Un aspecto importante en el marco del desarrollo de estos componentes, es el aseguramiento de la calidad de los recipientes una vez completado el proceso de fabricación. Este trabajo aborda la inspección de un COPV de forma cilíndrica de 100 litros de capacidad con liner de aluminio. Para ello se emplean dos técnicas de ensayos no destructivos: ultrasonido acoplado en aire y shearografía. Ambas técnicas fueron adaptadas específicamente para este tipo de recipiente y montadas sobre un escáner experimental que proporciona soporte y repetitividad a los ensayos, garantizando resultados cualitativos en la inspección de estos componentes. Los resultados que se obtuvieron con las dos técnicas se comparan y se observa un acuerdo entre ellos en lo que concierne a la calidad del proceso de fabricación del componente. A partir de los ensayos efectuados y de sus resultados se realizaron aportes y recomendaciones para una posible mejora del proceso de fabricaciónComposite Overwrapped Pressure Vessels (COPV) are extensively applied in the aerospace industry to contain high pressure liquids due to their elevated mechanical properties as well as being a lightweight component. They consist of a thin metallic structure (liner) wrapped by a plastic compound, reinforced with structural carbon fibers. An important aspect in the development of COPVs is the quality assurance once the manufacturing process has been completed. This work aims to the inspection of a cylindrical-aluminum-liner COPV of 100 liters of capacity. For this purpose, two non-destructive testing techniques were applied: aircoupled ultrasound and shearography. Both techniques were specifically adapted to the COPV geometry and mounted on an experimental scanner that provides support and repetitiveness to the tests. This mechanical arrangement guarantees qualitative results in the COPVs inspection. The obtained results with both techniques were compared and they show good agreement regarding the quality of the manufacturing process. Based on the tests carried out and their results, contributions and recommendations were made for a possible improvement of the manufacturing process.Fil: Romero Rosero, Christian Rodrigo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Gerencia de Ende (CAC); ArgentinaFil: Cosarinsky, Guillermo Gerardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Gerencia de Ende (CAC); ArgentinaFil: Iriarte, Juan Manuel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Gerencia de Ende (CAC); ArgentinaFil: Brizuela, Jose David. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Poodts, Exequiel. Kohlenia; ArgentinaFil: Ruiz Gale, María Fernanda. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Gerencia de Ende (CAC); Argentin
Aetiology and use of antibiotics in pregnancy-related infections: results of the WHO Global Maternal Sepsis Study (GLOSS), 1-week inception cohort
Background
Pregnancy-related infections are important contributors to maternal sepsis and mortality. We aimed to describe clinical, microbiological characteristics and use of antibiotics by source of infection and country income, among hospitalized women with suspected or confirmed pregnancy-related infections.
Methods
We used data from WHO Global Maternal Sepsis Study (GLOSS) on maternal infections in hospitalized women, in 52 low-middle- and high-income countries conducted between November 28th and December 4th, 2017, to describe the frequencies and medians of maternal demographic, obstetric, and clinical characteristics and outcomes, methods of infection diagnosis and causative pathogens, of single source pregnancy-related infection, other than breast, and initial use of therapeutic antibiotics. We included 1456 women.
Results
We found infections of the genital (n = 745/1456, 51.2%) and the urinary tracts (UTI) (n = 531/1456, 36.5%) to be the most frequent. UTI (n = 339/531, 63.8%) and post-caesarean skin and soft tissue infections (SSTI) (n = 99/180, 55.0%) were the sources with more culture samples taken and microbiological confirmations. Escherichia coli was the major uropathogen (n = 103/118, 87.3%) and Staphylococcus aureus (n = 21/44, 47.7%) was the commonest pathogen in SSTI. For 13.1% (n = 191) of women, antibiotics were not prescribed on the same day of infection suspicion. Cephalosporins (n = 283/531, 53.3%) were the commonest antibiotic class prescribed for UTI, while metronidazole (n = 303/925, 32.8%) was the most prescribed for all other sources. Ceftriaxone with metronidazole was the commonest combination for the genital tract (n = 98/745, 13.2%) and SSTI (n = 22/180, 12.2%). Metronidazole (n = 137/235, 58.3%) was the most prescribed antibiotic in low-income countries while cephalosporins and co-amoxiclav (n = 129/186, 69.4%) were more commonly prescribed in high-income countries.
Conclusions
Differences in antibiotics used across countries could be due to availability, local guidelines, prescribing culture, cost, and access to microbiology laboratory, despite having found similar sources and pathogens as previous studies. Better dissemination of recommendations in line with antimicrobial stewardship programmes might improve antibiotic prescription
Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study
Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe
Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
Recommended from our members
Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study
Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
Recommended from our members
Correction to: Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study
The original version of this article unfortunately contained a mistake