11 research outputs found

    Chronic myocardial infarction promotes atrial action potential alternans, afterdepolarisations and fibrillation

    Get PDF
    Aims: Atrial fibrillation (AF) is increased in patients with heart failure resulting from myocardial infarction (MI). We aimed to determine the effects of chronic ventricular MI in rabbits on the susceptibility to AF, and underlying atrial electrophysiological and Ca2+-handling mechanisms. Methods and results: In Langendorff-perfused rabbit hearts, under beta-adrenergic-stimulation with isoproterenol (1 µM; ISO), 8 weeks MI decreased AF threshold, indicating increased AF-susceptibility. This was associated with increased atrial action potential duration-alternans at 90% repolarisation, by 147%, and no significant change in mean APD or atrial global conduction velocity (n=6-13 non-MI hearts, 5-12 MI). In atrial isolated myocytes, also under beta-stimulation, L-type Ca2+ current (ICaL) density and intracellular Ca2+-transient amplitude were decreased by MI, by 35% and 41%, respectively, and the frequency of spontaneous depolarisations (SDs) was substantially increased. MI increased atrial myocyte size and capacity, and markedly decreased transverse-tubule density. In non-MI hearts perfused with ISO, the ICaL-blocker nifedipine, at a concentration (0.02 µM) causing an equivalent ICaL-reduction (35%) to that from the MI, did not affect AF-susceptibility, and decreased APD. Conclusion: chronic MI in rabbits remodels atrial structure, electrophysiology and intracellular Ca2+-handling. Increased susceptibility to AF by MI, under beta-adrenergic-stimulation, may result from associated production of atrial APD-alternans and SDs, since steady-state APD and global conduction velocity were unchanged under these conditions, and may be unrelated to the associated reduction in whole-cell ICaL. Future studies may clarify potential contributions of local conduction changes, and cellular and sub-cellular mechanisms of alternans, to the increased AF-susceptibility

    PAX4 Enhances Beta-Cell Differentiation of Human Embryonic Stem Cells

    Get PDF
    Background Human embryonic stem cells (HESC) readily differentiate into an apparently haphazard array of cell types, corresponding to all three germ layers, when their culture conditions are altered, for example by growth in suspension as aggregates known as embryoid bodies (EBs). However, this diversity of differentiation means that the efficiency of producing any one particular cell type is inevitably low. Although pancreatic differentiation has been reported from HESC, practicable applications for the use of β-cells derived from HESC to treat diabetes will only be possible once techniques are developed to promote efficient differentiation along the pancreatic lineages. Methods and Findings Here, we have tested whether the transcription factor, Pax4 can be used to drive the differentiation of HESC to a β-cell fate in vitro. We constitutively over-expressed Pax4 in HESCs by stable transfection, and used Q-PCR analysis, immunocytochemistry, ELISA, Ca2+ microfluorimetry and cell imaging to assess the role of Pax4 in the differentiation and intracellular Ca2+ homeostasis of β-cells developing in embryoid bodies produced from such HESC. Cells expressing key β-cell markers were isolated by fluorescence-activated cell sorting after staining for high zinc content using the vital dye, Newport Green. Conclusion Constitutive expression of Pax4 in HESC substantially enhances their propensity to form putative β-cells. Our findings provide a novel foundation to study the mechanism of pancreatic β-cells differentiation during early human development and to help evaluate strategies for the generation of purified β-cells for future clinical applications

    Temporal Development of Autonomic Dysfunction in Heart Failure:Effects of Age in an Ovine Rapid-pacing Model

    Get PDF
    Heart failure (HF) is predominantly a disease of older adults and characterized by extensive sympatho-vagal imbalance leading to impaired reflex control of heart rate (HR). However, whether aging influences the development or extent of the autonomic imbalance in HF remains unclear. To address this, we used an ovine model of aging with tachypacing-induced HF to determine whether aging affects the chronotropic and inotropic responses to autonomic stimulation and reduction in heart rate variability (HRV) in HF. We find that aging is associated with increased cardiac dimensions and reduced contractility before the onset of tachypacing, and these differences persist in HF. Additionally, the chronotropic response to β-adrenergic stimulation was markedly attenuated in HF, and this occurred more rapidly in aged animals. By measuring HR during sequential autonomic blockade, our data are consistent with a reduced parasympathetic control of resting HR in aging, with young HF animals having an attenuated sympathetic influence on HR. Time-domain analyses of HR show a reduction in HRV in both young and aged failing animals, although HRV is lowest in aged HF. In conclusion, aging is associated with altered autonomic control and β-adrenergic responsiveness of HR, and these are exacerbated with the development of HF

    In the RyR2R4496C mouse model of CPVT, β-adrenergic stimulation induces ca waves by increasing SR Ca content and not by decreasing the threshold for Ca Waves

    No full text
    Rationale: Mutations of the ryanodine receptor (RyR) cause catecholaminergic polymorphic ventricular tachycardia (CPVT). These mutations predispose to the generation of Ca waves and delayed afterdepolarizations during adrenergic stimulation. Ca waves occur when either sarcoplasmic reticulum (SR) Ca content is elevated above a threshold or the threshold is decreased. Which of these occurs in cardiac myocytes expressing CPVT mutations is unknown. Objective: We tested whether the threshold SR Ca content is different between control and CPVT and how it relates to SR Ca content during β-adrenergic stimulation. Methods and Results: Ventricular myocytes from the RyR2 R4496C +/− mouse model of CPVT and wild-type (WT) controls were voltage-clamped; diastolic SR Ca content was measured and compared with the Ca wave threshold. The results showed the following. (1) In 1 mmol/L [Ca 2+ ] o , β-adrenergic stimulation with isoproterenol (1μmol/L) caused Ca waves only in R4496C. (2) SR Ca content and Ca wave threshold in R4496C were lower than those in WT. (3) β-Adrenergic stimulation increased SR Ca content by a similar amount in both R4496C and WT. (4) β-Adrenergic stimulation increased the threshold for Ca waves. (5) During β-adrenergic stimulation in R4496C, but not WT, the increase of SR Ca was sufficient to reach threshold and produce Ca waves. Conclusions: In the R4496C CPVT model, the RyR is leaky, and this lowers both SR Ca content and the threshold for waves. β-Adrenergic stimulation produces Ca waves by increasing SR Ca content and not by lowering threshold. </jats:sec

    Age-related divergent remodeling of the cardiac extracellular matrix in heart failure: collagen accumulation in the young and loss in the aged

    Get PDF
    The incidence of heart failure (HF) increases with age. This study sought to determine whether aging exacerbates structural and functional remodeling of the myocardium in HF. HF was induced in young (~18 months) and aged sheep (>8 years) by right ventricular tachypacing. In non-paced animals, aging was associated with increased left ventricular (LV) end diastolic internal dimensions (EDID, P<0.001), reduced fractional shortening (P<0.01) and an increase in myocardial collagen content (P<0.01). HF increased EDID and reduced fractional shortening in both young and aged animals, although these changes were more pronounced in the aged (P<0.05). Age-associated differences in cardiac extracellular matrix (ECM) remodeling occurred in HF with collagen accumulation in young HF (P<0.001) and depletion in aged HF (P<0.05). MMP-2 activity increased in the aged control and young HF groups (P<0.05). Reduced tissue inhibitor of metalloproteinase (TIMP) expression (TIMPs 3 and 4, P<0.05) was present only in the aged HF group. Secreted protein acidic and rich in cysteine (SPARC) was increased in aged hearts compared to young controls (P<0.05) while serum procollagen type I C-pro peptide (PICP) was increased in both young failing (P<0.05) and aged failing (P<0.01) animals. In conclusion, collagen content of the cardiac ECM changes in both aging and HF although; whether collagen accumulation or depletion occurs depends on age. Changes in TIMP expression in aged failing hearts alongside augmented collagen synthesis in HF provide a potential mechanism for the age-dependent ECM remodeling. Aging should therefore be considered an important factor when elucidating cardiac disease mechanisms
    corecore