1,670 research outputs found
Detection of Signals from Cosmic Reionization using Radio Interferometric Signal Processing
Observations of the HI 21cm transition line promises to be an important probe
into the cosmic dark ages and epoch of reionization. One of the challenges for
the detection of this signal is the accuracy of the foreground source removal.
This paper investigates the extragalactic point source contamination and how
accurately the bright sources ( ~Jy) should be removed in order to
reach the desired RMS noise and be able to detect the 21cm transition line.
Here, we consider position and flux errors in the global sky-model for these
bright sources as well as the frequency independent residual calibration
errors. The synthesized beam is the only frequency dependent term included
here. This work determines the level of accuracy for the calibration and source
removal schemes and puts forward constraints for the design of the cosmic
reionization data reduction scheme for the upcoming low frequency arrays like
MWA,PAPER, etc. We show that in order to detect the reionization signal the
bright sources need to be removed from the data-sets with a positional accuracy
of arc-second. Our results also demonstrate that the efficient
foreground source removal strategies can only tolerate a frequency independent
antenna based mean residual calibration error of in amplitude
or degree in phase, if they are constant over each days of
observations (6 hours). In future papers we will extend this analysis to the
power spectral domain and also include the frequency dependent calibration
errors and direction dependent errors (ionosphere, primary beam, etc).Comment: accepted by ApJ; 12 pages, 10 figure
The cold origin of the warm dust around epsilon Eridani
Context: The K2V star eps Eri hosts one known inner planet, an outer Kuiper
belt analog, and an inner disk of warm dust. Spitzer/IRS measurements indicate
that the warm dust is present at distances as close as a few AU from the star.
Its origin is puzzling, since an "asteroid belt" that could produce this dust
would be unstable because of the known inner planet. Aims: Here we test the
hypothesis that the observed warm dust is generated by collisions in the outer
belt and is transported inward by Poynting-Robertson (P-R) drag and strong
stellar winds. Methods: We simulated a steady-state distribution of dust
particles outside 10AU with a collisional code and in the inner region (r<10AU)
with single-particle numerical integrations. By assuming homogeneous spherical
dust grains composed of water ice and silicate, we calculated the thermal
emission of the dust and compared it with observations. We investigated two
different orbital configurations for the inner planet inferred from RV
measurements, one with a highly eccentric orbit of e=0.7 and another one with a
moderate one of e=0.25. We also produced a simulation without a planet.
Results: Our models can reproduce the shape and magnitude of the observed SED
from mid-IR to sub-mm wavelengths, as well as the Spitzer/MIPS radial
brightness profiles. The best-fit dust composition includes both ice and
silicates. The results are similar for the two possible planetary orbits and
without a planet. Conclusions: The observed warm dust in the system can indeed
stem from the outer belt and be transported inward by P-R and stellar wind
drag. The inner planet has little effect on the distribution of dust, so that
the planetary orbit could not be constrained. Reasonable agreement between the
model and observations can only be achieved by relaxing the assumption of
purely silicate dust and assuming a mixture of silicate and ice in comparable
amounts.Comment: 9 pages, 9 figures, abstract abridge
21 cm Tomography of the High-Redshift Universe with the Square Kilometer Array
We discuss the prospects for ``tomography'' of the intergalactic medium (IGM)
at high redshifts using the 21 cm transition of neutral hydrogen. Existing
observational constraints on the epoch of reionization imply a complex
ionization history that may require multiple generations of sources. The 21 cm
transition provides a unique tool to probe this era in detail, because it does
not suffer from saturation effects, retains full redshift information, and
directly probes the IGM gas. Observations in the redshifted 21cm line will
allow one to study the history and morphology of reionization in detail.
Depending on the characteristics of the first sources, they may also allow us
to probe the era before reionization, when the first structures and luminous
sources were forming. The construction of high signal-to-noise ratio maps on
arcminute scales will require approximately one square kilometer of collecting
area.Comment: 15 pages, 8 figures, to appear in "Science with the Square Kilometer
Array," eds. C. Carilli and S. Rawlings, New Astronomy Reviews (Elsevier:
Amsterdam), corrected Fig.
Foreground Contamination in Interferometric Measurements of the Redshifted 21 cm Power Spectrum
Subtraction of astrophysical foreground contamination from "dirty" sky maps
produced by simulated measurements of the Murchison Widefield Array (MWA) has
been performed by fitting a 3rd-order polynomial along the spectral dimension
of each pixel in the data cubes. The simulations are the first to include the
unavoidable instrumental effects of the frequency-dependent primary antenna
beams and synthesized array beams. They recover the one-dimensional
spherically-binned input redshifted 21 cm power spectrum to within
approximately 1% over the scales probed most sensitively by the MWA (0.01 < k <
1 Mpc^-1) and demonstrate that realistic instrumental effects will not mask the
EoR signal. We find that the weighting function used to produce the dirty sky
maps from the gridded visibility measurements is important to the success of
the technique. Uniform weighting of the visibility measurements produces the
best results, whereas natural weighting significantly worsens the foreground
subtraction by coupling structure in the density of the visibility measurements
to spectral structure in the dirty sky map data cube. The extremely dense
uv-coverage of the MWA was found to be advantageous for this technique and
produced very good results on scales corresponding to |u| < 500 wavelengths in
the uv-plane without any selective editing of the uv-coverage.Comment: Replaced with version accepted by ApJ. 19 pages, including 3 figure
Transition from Secondary school CLIL to EMI at University: Initial evidence from research in Italy
Through vocabulary tests, interviews with students and recordings of classes/lectures, we measured students' English vocabulary knowledge against the vocabulary in the teachers' talk, the nature of classroom interaction in the two settings and the students' approaches to their learning in general and their in-class listening strategies in particular. In this way we aimed to identify the challenges students faced in English-medium education in the secondary and tertiary educational phases
The pneumococcal divisome: dynamic control of streptococcus pneumoniae cell division
Cell division in Streptococcus pneumoniae (pneumococcus) is performed and regulated by a protein complex consisting of at least 14 different protein elements; known as the divisome. Recent findings have advanced our understanding of the molecular events surrounding this process and have provided new understanding of the mechanisms that occur during the division of pneumococcus. This review will provide an overview of the key protein complexes and how they are involved in cell division. We will discuss the interaction of proteins in the divisome complex that underpin the control mechanisms for cell division and cell wall synthesis and remodelling that are required in S. pneumoniae, including the involvement of virulence factors and capsular polysaccharides
A detailed spectral study of GRB 041219A and its host galaxy
GRB 041219A is one of the longest and brightest gamma-ray bursts (GRBs) ever
observed. It was discovered by the INTEGRAL satellite, and thanks to a
precursor happening about 300 s before the bulk of the burst, ground based
telescopes were able to catch the rarely-observed prompt emission in the
optical and in the near infrared bands. Here we present the detailed analysis
of its prompt gamma-ray emission, as observed with IBIS on board INTEGRAL, and
of the available X-ray afterglow data collected by XRT on board Swift. We then
present the late-time multi-band near infrared imaging data, collected at the
TNG, and the CFHT, that allowed us to identify the host galaxy of the GRB as an
under-luminous, irregular galaxy of about 5x10^9 M_Sun at best fit redshift of
z=0.31 -0.26 +0.54. We model the broad-band prompt optical to gamma-ray
emission of GRB 041219A within the internal shock model. We were able to
reproduce the spectra and light curve invoking the synchrotron emission of
relativistic electrons accelerated by a series of propagating shock waves
inside a relativistic outflow. On the other hand, it is less easy to
simultaneously reproduce the temporal and spectral properties of the infrared
data.Comment: 12 pages, 9 figures, accepted for publication in MNRAS, Figure 5 in
reduced qualit
Majorana solutions to the two-electron problem
A review of the known different methods and results devised to study the
two-electron atom problem, appeared in the early years of quantum mechanics, is
given, with particular reference to the calculations of the ground state energy
of helium. This is supplemented by several, unpublished results obtained around
the same years by Ettore Majorana, which results did not convey in his
published papers on the argument, and thus remained unknown until now.
Particularly interesting, even for current research in atomic and nuclear
physics, is a general variant of the variational method, developed by Majorana
in order to take directly into account, already in the trial wavefunction, the
action of the full Hamiltonian operator of a given quantum system. Moreover,
notable calculations specialized to the study of the two-electron problem show
the introduction of the remarkable concept of an effective nuclear charge
different for the two electrons (thus generalizing previous known results), and
an application of the perturbative method, where the atomic number Z was
treated effectively as a continuous variable, contributions to the ground state
energy of an atom with given Z coming also from any other Z. Instead,
contributions relevant mainly for pedagogical reasons count simple broad range
estimates of the helium ionization potential, obtained by suitable choices for
the wavefunction, as well as a simple alternative to Hylleraas' method, which
led Majorana to first order calculations comparable in accuracy with well-known
order 11 results derived, in turn, by Hylleraas.Comment: amsart, 20 pages, no figure
A mouse model offers novel insights into the myopathy and tendinopathy often associated with pseudoachondroplasia and multiple epiphyseal dysplasia
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias belonging to the same bone dysplasia family. PSACH is characterized by generalized epi-metaphyseal dysplasia, short-limbed dwarfism, joint laxity and early onset osteoarthritis. MED is a milder disease with radiographic features often restricted to the epiphyses of the long bones. PSACH and some forms of MED result from mutations in cartilage oligomeric matrix protein (COMP), a pentameric glycoprotein found in cartilage, tendon, ligament and muscle. PSACH-MED patients often have a mild myopathy characterized by mildly increased plasma creatine kinase levels, a variation in myofibre size and/or small atrophic fibres. In some instances, patients are referred to neuromuscular clinics prior to the diagnosis of an underlying skeletal dysplasia; however, the myopathy associated with PSACH-MED has not previously been studied. In this study, we present a detailed study of skeletal muscle, tendon and ligament from a mouse model of mild PSACH harbouring a COMP mutation. Mutant mice exhibited a progressive muscle weakness associated with an increased number of muscle fibres with central nuclei at the perimysium and at the myotendinous junction. Furthermore, the distribution of collagen fibril diameters in the mutant tendons and ligaments was altered towards thicker collagen fibrils, and the tendons became more lax in cyclic strain tests. We hypothesize that the myopathy in PSACH-MED originates from an underlying tendon and ligament pathology that is a direct result of structural abnormalities to the collagen fibril architecture. This is the first comprehensive characterization of the musculoskeletal phenotype of PSACH-MED and is directly relevant to the clinical management of these patients
- …