9 research outputs found

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Body-composition changes in the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE)-2 study: A 2-y randomized controlled trial of calorie restriction in nonobese humans

    No full text
    Background: Calorie restriction (CR) retards aging and increases longevity in many animal models. However, it is unclear whether CR can be implemented in humans without adverse effects on body composition.Objective: We evaluated the effect of a 2-y CR regimen on body composition including the influence of sex and body mass index (BMI; in kg/m2) among participants enrolled in CALERIE-2 (Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy), a multicenter, randomized controlled trial.Design: Participants were 218 nonobese (BMI: 21.9-28.0) adults aged 21-51 y who were randomly assigned to 25% CR (CR, n = 143) or ad libitum control (AL, n = 75) in a 2:1 ratio. Measures at baseline and 12 and 24 mo included body weight, waist circumference, fat mass (FM), fat-free mass (FFM), and appendicular mass by dual-energy X-ray absorptiometry; activity-related energy expenditure (AREE) by doubly labeled water; and dietary protein intake by self-report. Values are expressed as means ± SDs.Results: The CR group achieved 11.9% ± 0.7% CR over 2-y and had significant decreases in weight (-7.6 ± 0.3 compared with 0.4 ± 0.5 kg), waist circumference (-6.2 ± 0.4 compared with 0.9 ± 0.5 cm), FM (-5.4 ± 0.3 compared with 0.5 ± 0.4 kg), and FFM (-2.0 ± 0.2 compared with -0.0 ± 0.2 kg) at 24 mo relative to the AL group (all between-group P < 0.001). Moreover, FFM as a percentage of body weight at 24 mo was higher, and percentage of FM was lower in the CR group than in the AL. AREE, but not protein intake, predicted preservation of FFM during CR (P < 0.01). Men in the CR group lost significantly more trunk fat (P = 0.03) and FFM expressed as a percentage of weight loss (P < 0.001) than women in the CR group.Conclusions: Two years of CR had broadly favorable effects on both whole-body and regional adiposity that could facilitate health span in humans. The decrements in FFM were commensurate with the reduced body mass; although men in the CR group lost more FFM than the women did, the percentage of FFM in the men in the CR group was higher than at baseline. CALERIE was registered at clinicaltrials.gov as NCT00427193

    Characterization of JWST science performance from commissioning: National Aeronautics and Space Administration European Space Agency Canadian Space Agency

    No full text

    The Science Performance of JWST as Characterized in Commissioning

    No full text
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    Characterization of JWST science performance from commissioning: National Aeronautics and Space Administration European Space Agency Canadian Space Agency

    No full text

    The James Webb Space Telescope Mission

    No full text
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit
    corecore