33 research outputs found

    Kinetics and cellular site of glycolipid loading control

    Get PDF
    CD1d-restricted natural killer T cells (NKT cells) possess a wide range of effector and regulatory activities that are related to their ability to secrete both T helper 1 (Th1) cell- and Th2 cell-type cytokines. We analyzed presentation of NKT cell activating α galactosylceramide (αGalCer) analogs that give predominantly Th2 cell-type cytokine responses to determine how ligand structure controls the outcome of NKT cell activation. Using a monoclonal antibody specific for αGalCer-CD1d complexes to visualize and quantitate glycolipid presentation, we found that Th2 cell-type cytokinebiasing ligands were characterized by rapid and direct loading of cell-surface CD1d proteins. Complexes formed by association of these Th2 cell-type cytokine-biasing αGalCer analogs with CD1d showed a distinctive exclusion from ganglioside-enriched, detergent-resistant plasma membrane microdomains of antigen-presenting cells. These findings help to explain how subtle alterations in glycolipid ligand structure can control the balance of proinflammatory and antiinflammatory activities of NKT cells

    Molecular and immunological evaluation of the expression of cancer/testis gene products in human colorectal cancer

    Get PDF
    Tumor-specific gene products, such as cancer/testis (CT) antigens, constitute promising targets for the development of T cell vaccines. Whereas CT antigens are frequently expressed in melanoma, their expression in colorectal cancers (CRC) remains poorly characterized. Here, we have studied the expression of the CT antigens MAGE-A3, MAGE-A4, MAGE-A10, NY-ESO-1 and SSX2 in CRC because of the presence of well-described HLA-A2-restricted epitopes in their sequences. Our analyses of 41 primary CRC and 14 metastatic liver lesions confirmed the low frequency of expression of these CT antigens. No increased expression frequencies were observed in metastatic tumors compared to primary tumors. Histological analyses of CRC samples revealed heterogeneous expression of individual CT antigens. Finally, evidence of a naturally acquired CT antigen-specific CD8+ T cell response could be demonstrated. These results show that the expression of CT antigens in a subset of CRC patients induces readily detectable T cell response

    Immunogenicity of the carcinoembryonic antigen derived peptide 694 in HLA-A2 healthy donors and colorectal carcinoma patients

    Get PDF
    Carcinoembryonic antigen (CEACAM5) is commonly overexpressed in human colon cancer. Several antigenic peptides recognized by cytolytic CD8+ T-cells have been identified and used in colon cancer phase-I vaccination clinical trials. The HLA-A*0201-binding CEA694-702 peptide was recently isolated from acid eluted MHC-I associated peptides from a human colon tumor cell line. However, the immunogenicity of this peptide in humans remains unknown. We found that the peptide CEA694-702 binds weakly to HLA-A*0201 molecules and is ineffective at inducing specific CD8+ T-cell responses in healthy donors. Immunogenic-altered peptide ligands with increased affinity for HLA-A*0201 were identified. Importantly, the elicited cytolytic T lymphocyte (CTL) lines and clones cross-reacted with the wild-type CEA694-702 peptide. Tumor cells expressing CEA were recognized in a peptide and HLA-A*0201 restricted fashion, but high-CEA expression levels appear to be required for CTL recognition. Finally, CEA-specific T-cell precursors could be readily expanded by in vitro stimulation of peripheral blood mononuclear cell (PBMC) from colon cancer patients with altered CEA peptide. However, the CEA-specific CD8+ T-cell clones derived from cancer patients revealed low-functional avidity and impaired tumor-cell recognition. Together, using T-cells to demonstrate the processing and presentation of the peptide CEA694-702, we were able to corroborate its presentation by tumor cells. However, the low avidity of the specific CTLs generated from cancer patients as well as the high-antigen expression levels required for CTL recognition pose serious concerns for the use of CEA694-702 in cancer immunotherap

    Synthesis and biological activity of α-glucosyl C24:0 and C20:2 ceramides

    Get PDF
    a-Glucosyl ceramides 4 and 5 have been synthesised and evaluated for their ability to stimulate the activation and expansion of human iNKT cells. The key challenge in the synthesis of both target molecules was the stereoselective synthesis of the a-glycosidic linkage. Of the methods examined, glycosylation using per-TMS-protected glucosyl iodide 16 was completely a-selective and provided gram quantities of amine 11, from which a-glucosyl ceramides 4 and 5 were obtained by N-acylation. a-GlcCer 4, containing a C24 saturated acyl chain, stimulated a marked proliferation and expansion of human circulating iNKT cells in short-term cultures. a-GlcCer 5, which contains a C20 11,14-cis-diene acyl chain (C20:2),induced extremely similar levels of iNKT cell activation and expansion

    Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages

    Get PDF
    Genetic depletion of macrophages in Polyoma Middle T oncoprotein (PyMT)‐induced mammary tumors in mice delayed the angiogenic switch and the progression to malignancy. To determine whether vascular endothelial growth factor A (VEGF‐A) produced by tumor‐associated macrophages regulated the onset of the angiogenic switch, a genetic approach was used to restore expression of VEGF‐A into tumors at the benign stages. This stimulated formation of a high‐density vessel network and in macrophage‐depleted mice, was followed by accelerated tumor progression. The expression of VEGF‐A led to a massive infiltration into the tumor of leukocytes that were mostly macrophages. This study suggests that macrophage‐produced VEGF regulates malignant progression through stimulating tumor angiogenesis, leukocytic infiltration and tumor cell invasion

    Distinct and Overlapping Effector Functions of Expanded Human CD4+, CD8α+ and CD4-CD8α- Invariant Natural Killer T Cells

    Get PDF
    CD1d-restricted invariant natural killer T (iNKT) cells have diverse immune stimulatory/regulatory activities through their ability to release cytokines and to kill or transactivate other cells. Activation of iNKT cells can protect against multiple diseases in mice but clinical trials in humans have had limited impact. Clinical studies to date have targeted polyclonal mixtures of iNKT cells and we proposed that their subset compositions will influence therapeutic outcomes. We sorted and expanded iNKT cells from healthy donors and compared the phenotypes, cytotoxic activities and cytokine profiles of the CD4+, CD8α+ and CD4−CD8α− double-negative (DN) subsets. CD4+ iNKT cells expanded more readily than CD8α+ and DN iNKT cells upon mitogen stimulation. CD8α+ and DN iNKT cells most frequently expressed CD56, CD161 and NKG2D and most potently killed CD1d+ cell lines and primary leukemia cells. All iNKT subsets released Th1 (IFN-γ and TNF-α) and Th2 (IL-4, IL-5 and IL-13) cytokines. Relative amounts followed a CD8α>DN>CD4 pattern for Th1 and CD4>DN>CD8α for Th2. All iNKT subsets could simultaneously produce IFN-γ and IL-4, but single-positivity for IFN-γ or IL-4 was strikingly rare in CD4+ and CD8α+ fractions, respectively. Only CD4+ iNKT cells produced IL-9 and IL-10; DN cells released IL-17; and none produced IL-22. All iNKT subsets upregulated CD40L upon glycolipid stimulation and induced IL-10 and IL-12 secretion by dendritic cells. Thus, subset composition of iNKT cells is a major determinant of function. Use of enriched CD8α+, DN or CD4+ iNKT cells may optimally harness the immunoregulatory properties of iNKT cells for treatment of disease

    The cytosolic 5’-nucleotidase cN-II lowers the adaptability to glucose deprivation in human breast cancer cells

    Get PDF
    International audienceThe cytosolic 5'-nucleotidase cN-II is a highly conserved enzyme implicated in nucleotide metabolism. Based on recent observations suggesting additional roles not directly associated to its enzymatic activity, we studied human cancer cell models with basal or decreased cN-II expression. We developed cancer cells with stable inhibition of cN-II expression by transfection of shRNA-coding plasmids, and studied their biology. We show that human breast cancer cells MDA-MB-231 with decreased cN-II expression better adapt to the disappearance of glucose in growth medium under normoxic conditions than cells with a baseline expression level. This is associated with enhanced in vivo growth and a lower content of ROS in cells cultivated in absence of glucose due to more efficient mechanisms of elimination of ROS. Conversely, cells with low cN-II expression are more sensitive to glucose deprivation in hypoxic conditions. Overall, our results show that cN-II regulates the cellular response to glucose deprivation through a mechanism related to ROS metabolism and defence
    corecore