369 research outputs found

    Genome-wide association mapping of zinc and iron concentration in barley landraces from Ethiopia and Eritrea

    Get PDF
    Mamo, B.E., Barber, B., Steffenson, B.J., 2014. Genome- wide association mapping of zinc and iron concentration in barley landraces from Ethiopia and Eritrea. J. Cereal Sci. XX, XX-XX.Barley is one of the oldest cultivated crop plants and is a major part of a staple diet in some developing countries. The objectives of this study were to characterize genetic variation in grain zinc and iron concentration and kernel weight, and identify quantitative trait loci (QTL) associated with these traits in barley landraces from Ethiopia/Eritrea using a genome-wide association study (GWAS). Barley landraces were grown under greenhouse and field conditions, characterized for micronutrient concentration and kernel weight, and then genotyped with 7842 single nucleotide polymorphism (SNP) markers. The germplasm exhibited a wide range of variation for these traits with some accessions having high levels of zinc and iron. Heritability values of 0.65 and 0.59, respectively, were obtained for zinc and iron concentrations in grain samples harvested from field trials. One QTL associated with grain zinc concentration was identified in a unique genomic location on the long arm of chromosome 6H. For kernel weight, a known QTL region on the long arm of chromosome 2H was detected. This study demonstrates the existence of high genetic variation for grain zinc and iron concentration in Ethiopian/Eritrean barley landraces and also the utility of GWAS for identifying and mapping QTL underlying micronutrient accumulation

    Transport and Spectroscopic Studies of the Effects of Fullerene Structure on the Efficiency and Lifetime of Polythiophene-based Solar Cells

    Get PDF
    Time-dependent measurements of both power conversion efficiency and ultraviolet-visible absorption spectroscopy have been observed for solar cell blends containing the polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) with two different functionalized C60 electron acceptor molecules: commercially available [6,6]-phenyl C61 butyric acid methyl ester (PCBM) or [6,6]-phenyl C61 butyric acid octadecyl ester (PCBOD) produced in this laboratory. Efficiency was found to decay with an exponential time dependence, while spectroscopic features show saturating exponential behavior. Time constants extracted from both types of measurements showed reasonable agreement for samples produced from the same blend. In comparison to the PCBM samples, the stability of the PCBOD blends was significantly enhanced, while both absorption and power conversion efficiency were decreased.Comment: manuscript submitted to Solar Energy Materials and Solar Cell

    Influence of functionalized fullerene structure on polymer photovoltaic degradation

    Get PDF
    The time dependence of device performance has been measured for photocells using blends containing the conjugated polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with two different functionalized C60 electron acceptor molecules: commercially available [6,6]-phenyl C61 butyric acid methyl ester (PCBM) or [6,6]-phenyl C61 butyric acid octadecyl ester (PCBOD) produced in this laboratory. Performance was characterized by the short-circuit current output of the devices, with the time dependence of PCBM samples typically degrading exponentially. Variations in the characteristic lifetime of the devices were observed to depend on the molar fraction of the electron acceptor molecules (calculated with respect to the MEH-PPV monomer fraction). In comparison to the PCBM samples, the stability of the PCBOD blends was significantly enhanced, with a one or two order of magnitude improvement. Corresponding spectroscopic data with similar time evolution as the transport measurements suggest an independent means for determining and understanding degradation mechanisms

    Cytoplasmic chromatin triggers inflammation in senescence and cancer

    Get PDF
    Chromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence, a form of terminal cell-cycle arrest associated with pro-inflammatory responses. The functional significance of chromatin in the cytoplasm is unclear. Here we show that cytoplasmic chromatin activates the innate immunity cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway, leading both to short-term inflammation to restrain activated oncogenes and to chronic inflammation that associates with tissue destruction and cancer. The cytoplasmic chromatin-cGAS-STING pathway promotes the senescence-associated secretory phenotype in primary human cells and in mice. Mice deficient in STING show impaired immuno-surveillance of oncogenic RAS and reduced tissue inflammation upon ionizing radiation. Furthermore, this pathway is activated in cancer cells, and correlates with pro-inflammatory gene expression in human cancers. Overall, our findings indicate that genomic DNA serves as a reservoir to initiate a pro-inflammatory pathway in the cytoplasm in senescence and cancer. Targeting the cytoplasmic chromatin-mediated pathway may hold promise in treating inflammation-related disorders

    Exploring Gusev Crater with spirit: Review of science objectives and testable hypotheses

    Get PDF
    Gusev Crater was selected as the landing site for the Mars Exploration Rover (MER) Spirit mission. Located at the outlet of Ma'adim Vallis and 250 km south of the volcano Apollinaris Patera, Gusev is an outstanding site to achieve the goals of the MER mission. The crater could have collected sediments from a variety of sources during its 3.9 Ga history, including fluvial, lacustrine, volcanic, glacial, impact, regional and local aeolian, and global air falls. It is a unique site to investigate the past history of water on Mars, climate and geological changes, and the potential habitability of the planet, which are central science objectives of the MER mission. Because of its complex history and potential diversity, Gusev will allow the testing of a large spectrum of hypotheses with the complete suite of MER instruments. Evidence consistent with long-lived lake episodes exist in the landing ellipse area. They might offer a unique opportunity to study, for the first time, Martian aqueous sediments and minerals formed in situ in their geological context. We review the geological history and diversity of the landing site, the science hypotheses that can be tested during the MER mission, and the relevance of Gusev to the MER mission objectives and payload

    A bovine lymphosarcoma cell line infected with theileria annulata exhibits an irreversible reconfiguration of host cell gene expression

    Get PDF
    Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner

    Distinct White Matter Changes Associated with Cerebrospinal Fluid Amyloid-β\u3csub\u3e1-42\u3c/sub\u3e and Hypertension

    Get PDF
    BACKGROUND: Alzheimer\u27s disease (AD) pathology and hypertension (HTN) are risk factors for development of white matter (WM) alterations and might be independently associated with these alterations in older adults. OBJECTIVE: To evaluate the independent and synergistic effects of HTN and AD pathology on WM alterations. METHODS: Clinical measures of cerebrovascular disease risk were collected from 62 participants in University of Kentucky Alzheimer\u27s Disease Center studies who also had cerebrospinal fluid (CSF) sampling and MRI brain scans. CSF Aβ1-42 levels were measured as a marker of AD, and fluid-attenuated inversion recovery imaging and diffusion tensor imaging were obtained to assess WM macro- and microstructural properties. Linear regression analyses were used to assess the relationships among WM alterations, cerebrovascular disease risk, and AD pathology. Voxelwise analyses were performed to examine spatial patterns of WM alteration associated with each pathology. RESULTS: HTN and CSF Aβ1-42 levels were each associated with white matter hyperintensities (WMH). Also, CSF Aβ1-42 levels were associated with alterations in normal appearing white matter fractional anisotropy (NAWM-FA), whereas HTN was marginally associated with alterations in NAWM-FA. Linear regression analyses demonstrated significant main effects of HTN and CSF Aβ1-42 on WMH volume, but no significant HTN×CSF Aβ1-42 interaction. Furthermore, voxelwise analyses showed unique patterns of WM alteration associated with hypertension and CSF Aβ1-42. CONCLUSION: Associations of HTN and lower CSF Aβ1-42 with WM alteration were statistically and spatially distinct, suggesting independent rather than synergistic effects. Considering such spatial distributions may improve diagnostic accuracy to address each underlying pathology

    The ENCODE Project at UC Santa Cruz

    Get PDF
    The goal of the Encyclopedia Of DNA Elements (ENCODE) Project is to identify all functional elements in the human genome. The pilot phase is for comparison of existing methods and for the development of new methods to rigorously analyze a defined 1% of the human genome sequence. Experimental datasets are focused on the origin of replication, DNase I hypersensitivity, chromatin immunoprecipitation, promoter function, gene structure, pseudogenes, non-protein-coding RNAs, transcribed RNAs, multiple sequence alignment and evolutionarily constrained elements. The ENCODE project at UCSC website () is the primary portal for the sequence-based data produced as part of the ENCODE project. In the pilot phase of the project, over 30 labs provided experimental results for a total of 56 browser tracks supported by 385 database tables. The site provides researchers with a number of tools that allow them to visualize and analyze the data as well as download data for local analyses. This paper describes the portal to the data, highlights the data that has been made available, and presents the tools that have been developed within the ENCODE project. Access to the data and types of interactive analysis that are possible are illustrated through supplemental examples

    The Optimal Study: Describing the Key Components of Optimal Health Care Delivery to UK Care Home Residents: A Research Protocol

    Get PDF
    Long-term institutional care in the United Kingdom is provided by care homes. Residents have prevalent cognitive impairment and disability, have multiple diagnoses, and are subject to polypharmacy. Prevailing models of health care provision (ad hoc, reactive, and coordinated by general practitioners) result in unacceptable variability of care. A number of innovative responses to improve health care for care homes have been commissioned. The organization of health and social care in the United Kingdom is such that it is unlikely that a single solution to the problem of providing quality health care for care homes will be identified that can be used nationwide. Realist evaluation is a methodology that uses both qualitative and quantitative data to establish an in-depth understanding of what works, for whom, and in what settings. In this article we describe a protocol for using realist evaluation to understand the context, mechanisms, and outcomes that shape effective health care delivery to care home residents in the United Kingdom. By describing this novel approach, we hope to inform international discourse about research methodologies in long-term care settings internationally
    • …
    corecore