67 research outputs found

    "Photobiomics" : can light, including photobiomodulation, alter the microbiome?

    Get PDF
    Objective: The objective of this review is to consider the dual effects of microbiome and photobiomodulation (PBM) on human health and to suggest a relationship between these two as a novel mechanism. Background: PBM describes the use of low levels of visible or near-infrared (NIR) light to heal and stimulate tissue, and to relieve pain and inflammation. In recent years, PBM has been applied to the head as an investigative approach to treat diverse brain diseases such as stroke, traumatic brain injury (TBI), Alzheimer's and Parkinson's diseases, and psychiatric disorders. Also, in recent years, increasing attention has been paid to the total microbial population that colonizes the human body, chiefly in the gut and the mouth, called the microbiome. It is known that the composition and health of the gut microbiome affects many diseases related to metabolism, obesity, cardiovascular disorders, autoimmunity, and even brain disorders. Materials and methods: A literature search was conducted for published reports on the effect of light on the microbiome. Results: Recent work by our research group has demonstrated that PBM (red and NIR light) delivered to the abdomen in mice, can alter the gut microbiome in a potentially beneficial way. This has also now been demonstrated in human subjects. Conclusions: In consideration of the known effects of PBM on metabolomics, and the now demonstrated effects of PBM on the microbiome, as well as other effects of light on the microbiome, including modulating circadian rhythms, the present perspective introduces a new term "photobiomics" and looks forward to the application of PBM to influence the microbiome in humans. Some mechanisms by which this phenomenon might occur are considered

    Mosquito Consumption by Insectivorous Bats: Does Size Matter?

    Get PDF
    Abstract Insectivorous bats have often been touted as biological control for mosquito populations. However, mosquitoes generally represent only a small proportion of bat diet. Given the small size of mosquitoes, restrictions imposed on prey detectability by low frequency echolocation, and variable field metabolic rates (FMR), mosquitoes may not be available to or profitable for all bats. This study investigated whether consumption of mosquitoes was influenced by bat size, which is negatively correlated with echolocation frequency but positively correlated with bat FMR. To assess this, we investigated diets of five eastern Australian bat species (Vespadelus vulturnus Thomas, V. pumilus Gray, Miniopterus australis Tomes, Nyctophilus gouldi Tomes and Chalinolobus gouldii Gray) ranging in size from 4-14 g in coastal forest, using molecular analysis of fecal DNA. Abundances of potential mosquito and non-mosquito prey were concurrently measured to provide data on relative prey abundance. Aedes vigilax was locally the most abundant mosquito species, while Lepidoptera the most abundant insect order. A diverse range of prey was detected in bat feces, although members of Lepidoptera dominated, reflecting relative abundance at trap sites. Consumption of mosquitoes was restricted to V. vulturnus and V. pumilus, two smaller sized bats (4 and 4.5 g). Although mosquitoes were not commonly detected in feces of V. pumilus, they were present in feces of 55 % of V. vulturnus individuals. To meet nightly FMR requirements, Vespadelus spp. would need to consume ~600-660 mosquitoes on a mosquito-only diet, or ~160-180 similar sized moths on a moth-only diet. Lower relative profitability of mosquitoes may provide an explanation for the low level of mosquito consumption among these bats and the absence of mosquitoes in feces of larger bats. Smaller sized bats, especially V. vulturnus, are likely to be those most sensitive to reductions in mosquito abundance and should be monitored during mosquito control activities

    A randomized placebo-controlled study of a transcranial photobiomodulation helmet in Parkinson’s disease : post-hoc analysis of motor outcomes

    Get PDF
    Emerging evidence is increasingly supporting the use of transcranial photobiomodulation (tPBM) to improve symptoms of neurodegenerative diseases, including Parkinson’s disease (PD). The objective of this study was to analyse the safety and efficacy of tPBM for PD motor symptoms. The study was a triple blind, randomized placebo-controlled trial with 40 idiopathic PD patients receiving either active tPBM (635 nm plus 810 nm LEDs) or sham tPBM for 24 min per day (56.88J), six days per week, for 12 weeks. The primary outcome measures were treatment safety and a 37-item MDS-UPDRS-III (motor domain) assessed at baseline and 12 weeks. Individual MDS-UPDRS-III items were clustered into sub-score domains (facial, upper-limb, lower-limb, gait, and tremor). The treatment produced no safety concerns or adverse events, apart from occasional temporary and minor dizziness. There was no significant difference in total MDS-UPDRS-III scores between groups, presumably due to the placebo effect. Additional analyses demonstrated that facial and lower-limb sub-scores significantly improved with active treatment, while gait and lower-limb sub-scores significantly improved with sham treatment. Approximately 70% of participants responded to active treatment (≥5 decrease in MDS-UPDRS-III score) and improved in all sub-scores, while sham responders improved in lower-limb sub-scores only. tPBM appears to be a safe treatment and improved several PD motor symptoms in patients that responded to treatment. tPBM is proving to be increasingly attractive as a possible non-pharmaceutical adjunct therapy

    Bird communities across different levels of human settlement: A comparative analysis from two northern Amazonian ecoregions

    Get PDF
    Urban ecosystems are increasingly dominating landscapes globally, so it is critical to understand the effects of human settlements on biodiversity. Bird communities are effective indicators because they are impacted by the size and expansion of human settlements, exemplified by changes in their habitat use, breeding and foraging behaviours, as well as patterns of richness and abundance. Existing studies on bird community responses to human settlements have mainly focused on single ecoregions and large cities, leaving a gap in comparative research on how differently sized human settlements affect bird communities across various ecoregions. To address this gap, we examine species richness, bird abundances and community composition in human settlements, which exhibit variable sizes, populations, landscape configurations, and overall intensity of settlement in two tropical ecoregions in Guyana, Amazonia: forest and savannah. In each ecoregion we explored how different groupings of urban tolerance in birds responded to human settlements of differing population size and building densities. Overall, we found significant differences in bird communities across the varying levels of human settlement intensity in both ecoregions, with greater differences in bird community composition in the forest ecoregion than the savannah region. In both ecoregions, species richness and abundance were highest at the medium level of settlement of human settlement. Our findings suggest that bird tolerance to human settlements varies based on ecoregion and site-level factors. In the savannah, built features may be benefitting birds from all urban tolerance levels, but they have a negative impact on less urban-tolerant species in the forest ecoregion. Our comparative analysis reveals for the first time that the impact of human settlements on avian communities in northern Amazonia varies among ecoregions, indicating that species evolved to live in a savannah may be more tolerant to human settlements than those more evolved to a forest system

    Variable shifts in bird and bat assemblages as a result of reduced-impact logging revealed after 10 years

    Get PDF
    1. Selective logging is the most widespread driver of land-use change in biodiverse and carbon-rich tropical forests. However, the effects of selective logging on bio-diversity are less than those associated with other drivers of forest degradation. A suite of recent research has shown that reduced-impact logging (RIL) results in few or no changes to biological assemblages. But because this logging technique is relatively new, most studies have only considered short-term impacts. 2. We address this research gap by quantifying changes in biodiversity assemblage as a result of RIL over the longer term. We comprehensively sampled bird and bat assemblages pre-logged, 1 year after, and 10 years after RIL in Guyana, using a before-after control-impact (BACI) sampling design. We compared bird and bat assemblages in each timeframe, and additionally appraised the impact of time since logging, and the number of trees harvested across the suite of species which we further divided between different feeding guilds, disturbance sensitivity and vertical stratification of forest use. 3. We found that 1 year after logging only minor changes could be detected, but 10 years later richness had slightly declined in some groups, while others had shown complete recovery. Nectivorous and insectivorous birds, and carnivorous bats declined in richness, while carnivorous birds, showed a clear recovery to a state akin to pre-logging. This indicates that for some niches a subtle, but long-term relaxation effect may be occurring, whereby extinction debts are realized long after the initial disturbance, while other groups have either recovered or not changed after logging. 4. Assemblage changes were also predicted by vertical stratification of forest use, with avian species using the understorey and mid–upper levels of the forest being most affected. 5. Synthesis and applications: Our study demonstrates how best practice forestry and logging can maintain healthy vertebrate populations over the long term. Forestry concessions that adopt techniques of low-harvest RIL and are managed for their long-term timber provision through extension of regeneration times beyond 10 years after harvest, are likely to benefit from the ecosystem services provided by biodiversity, while also making a valuable contribution to the global conservation estate

    The effect of photobiomodulation on the brain during wakefulness and sleep

    Get PDF
    Over the last seventy years or so, many previous studies have shown that photobiomodulation, the use of red to near infrared light on body tissues, can improve central and peripheral neuronal function and survival in both health and in disease. These improvements are thought to arise principally from an impact of photobiomodulation on mitochondrial and non-mitochondrial mechanisms in a range of different cell types, including neurones. This impact has downstream effects on many stimulatory and protective genes. An often-neglected feature of nearly all of these improvements is that they have been induced during the state of wakefulness. Recent studies have shown that when applied during the state of sleep, photobiomodulation can also be of benefit, but in a different way, by improving the flow of cerebrospinal fluid and the clearance of toxic waste-products from the brain. In this review, we consider the potential differential effects of photobiomodulation dependent on the state of arousal. We speculate that the effects of photobiomodulation is on different cells and systems depending on whether it is applied during wakefulness or sleep, that it may follow a circadian rhythm. We speculate further that the arousal-dependent photobiomodulation effects are mediated principally through a biophoton – ultra-weak light emission – network of communication and repair across the brain

    Spectroscopic and Mechanistic Studies of Heterodimetallic Forms of Metallo-β-lactamase NDM-1

    Get PDF
    In an effort to characterize the roles of each metal ion in metallo-β-lactamase NDM-1, heterodimetallic analogues (CoCo-, ZnCo-, and CoCd-) of the enzyme were generated and characterized. UV–vis, 1H NMR, EPR, and EXAFS spectroscopies were used to confirm the fidelity of the metal substitutions, including the presence of a homogeneous, heterodimetallic cluster, with a single-atom bridge. This marks the first preparation of a metallo-β-lactamase selectively substituted with a paramagnetic metal ion, Co(II), either in the Zn1 (CoCd-NDM-1) or in the Zn2 site (ZnCo-NDM-1), as well as both (CoCo-NDM-1). We then used these metal-substituted forms of the enzyme to probe the reaction mechanism, using steady-state and stopped-flow kinetics, stopped-flow fluorescence, and rapid-freeze-quench EPR. Both metal sites show significant effects on the kinetic constants, and both paramagnetic variants (CoCd- and ZnCo-NDM-1) showed significant structural changes on reaction with substrate. These changes are discussed in terms of a minimal kinetic mechanism that incorporates all of the data

    Mouse Genome-Wide Association and Systems Genetics Identify Asxl2 As a Regulator of Bone Mineral Density and Osteoclastogenesis

    Get PDF
    Significant advances have been made in the discovery of genes affecting bone mineral density (BMD); however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA) and co-expression network analysis were used in the recently described Hybrid Mouse Diversity Panel (HMDP) to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal, and femoral BMD revealed four significant associations (−log10P>5.39) affecting at least one BMD trait on chromosomes (Chrs.) 7, 11, 12, and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS) SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2) gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism through which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cells of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF
    • …
    corecore