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ABSTRACT 47 

Bone marrow adipose tissue (MAT) accounts for up to 70% of bone marrow volume in healthy adults and 48 

increases further in clinical conditions of altered skeletal or metabolic function. Perhaps most strikingly, 49 

and in stark contrast to white adipose tissue (WAT), MAT has been found to increase during caloric 50 

restriction (CR) in humans and many other species. Hypoleptinemia may drive MAT expansion during 51 

CR but this has not been demonstrated conclusively. Indeed, MAT formation and function are poorly 52 

understood; hence, the physiological and pathological roles of MAT remain elusive. We recently revealed 53 

that MAT contributes to hyperadiponectinemia and systemic adaptations to CR. To further these 54 

observations, we have now performed CR studies in rabbits to determine if CR affects adiponectin 55 

production by MAT. Moderate or extensive CR decreased bone mass, WAT mass, and circulating leptin, 56 

but, surprisingly, did not cause hyperadiponectinemia or MAT expansion. Although this unexpected 57 

finding limited our subsequent MAT characterization, it demonstrates that during CR, bone loss can occur 58 

independently of MAT expansion; increased MAT may be required for hyperadiponectinemia; and 59 

hypoleptinemia is not sufficient for MAT expansion. We further investigated this relationship in mice. In 60 

females, CR increased MAT without decreasing circulating leptin, suggesting that hypoleptinemia is also 61 

not necessary for MAT expansion. Finally, circulating glucocorticoids increased during CR in mice but 62 

not rabbits, suggesting that glucocorticoids might drive MAT expansion during CR. These observations 63 

provide insights into the causes and consequences of CR-associated MAT expansion, knowledge with 64 

potential relevance to health and disease.65 
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INTRODUCTION 66 

Adipocytes are a major component of human bone marrow (BM), comprising up to 70% of BM 67 

volume and accounting for over 10% of total adipose mass in lean, healthy adults (1, 2). Such marrow 68 

adipose tissue (MAT) further increases in diverse clinical conditions, including aging-associated bone 69 

loss and osteoporosis (3); estrogen deficiency (4, 5); type I diabetes (6, 7); and during treatment with 70 

pharmacological agents such as glucocorticoids, thiazolidinediones, or fibroblast growth factor-21 71 

(FGF21) (8-12). Perhaps most strikingly, MAT is not catabolized during acute starvation (13, 14) but 72 

instead increases during anorexia nervosa and other conditions of prolonged caloric restriction (CR) (15-73 

18). This is in stark contrast to white adipose tissue (WAT), underscoring the notion that MAT and WAT 74 

are developmentally and functionally distinct. However, both MAT formation and function are poorly 75 

understood, and therefore the impact of MAT on human physiology and disease remains to be 76 

established. 77 

Understanding why MAT increases during CR might yield insights into MAT’s physiological and 78 

pathological functions. Many changes that occur during CR are physiological adaptations that improve 79 

the ability to survive and/or recover from starvation (19). Such beneficial adaptations are likely to have 80 

been strongly selected for during mammalian evolution (20), and therefore the fact that MAT expands 81 

during CR suggests that MAT might serve an important physiological function. Alternatively, CR-82 

associated MAT expansion might be a neutral, inconsequential phenomenon, or a pathological response 83 

that negatively impacts human health (18). Whatever the case, improved knowledge of the causes and 84 

consequences of MAT expansion during CR might shed light on the role of MAT in human physiology 85 

and disease. 86 

Several hypotheses have been proposed to explain why MAT increases during CR (18). For 87 

example, CR and/or fasting are associated with decreased circulating leptin, estradiol, and insulin-like 88 

growth factor-1 (IGF1), and increased circulating FGF21, ghrelin, and cortisol or corticosterone (15, 21-89 

25). Each of these changes has also been linked to increased BM adiposity in other contexts (5, 11, 12, 90 

26-29), and therefore each of these factors has been proposed as a mediator of CR-associated MAT 91 
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expansion. The strongest argument has been made for hypoleptinemia (18). In vitro studies suggest that 92 

leptin directly inhibits adipogenic differentiation of BM stromal cells (30, 31), whereas MAT is increased 93 

in leptin-deficient ob/ob mice (26). Moreover, central or peripheral leptin administration leads to 94 

decreased BM adiposity in ob/ob mice (26, 32), type 1 diabetic mice (33) and Sprague-Dawley rats (34). 95 

Leptin may promote MAT loss by acting centrally to increase activity of the sympathetic nervous system, 96 

a mechanism through which leptin also promotes bone resorption (35).  Finally, serum leptin 97 

concentrations inversely associate with vertebral BM adiposity in a cohort of healthy and anorexic 98 

humans (36). Thus, several lines of evidence support the possibility that hypoleptinemia drives MAT 99 

expansion during CR. However, why CR leads to MAT expansion remains to be established. 100 

In addition to MAT formation, the function of MAT during CR has also begun to be addressed. 101 

We recently found that, during CR, MAT contributes to increased circulating levels of adiponectin (2), a 102 

hormone associated with enhanced insulin sensitivity and fat oxidation, anti-atherogenic and anti-cancer 103 

effects. Moreover, we found that in mice with impaired MAT expansion, skeletal muscle adaptations to 104 

CR are suppressed (2). These observations support the concept that MAT is an endocrine organ and 105 

suggest that MAT exerts systemic effects to impact adaptive responses to CR (2). However, numerous 106 

questions remain. For example, does CR alter MAT’s expression or secretion of adiponectin, or other 107 

endocrine properties of MAT? And does MAT produce other endocrine factors that contribute to systemic 108 

effects of CR? 109 

To address these questions, we investigated the effect of moderate or extensive CR in rabbits, a 110 

species that allows isolation of relatively large amounts of intact MAT for downstream analysis (2). 111 

Surprisingly, these CR regimens did not lead to MAT expansion or increased circulating adiponectin, 112 

despite marked bone loss and hypoleptinemia. Conversely, in female mice we found that CR promotes 113 

MAT expansion without altering circulating leptin. Our rabbit studies further suggest site-dependent 114 

differences in BM adipocyte size and responsiveness to varying degrees of CR. Finally, we found that CR 115 

is associated with increased circulating glucocorticoids in mice, but not in rabbits, suggesting that 116 

glucocorticoid excess might contribute to MAT expansion during CR. Together, these observations shed 117 
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new light on the potential mechanisms of MAT formation; the site-dependent nature of MAT 118 

characteristics; and the interplay between MAT expansion, bone loss, and circulating adiponectin.119 
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MATERIALS AND METHODS 120 

Animals and animal care 121 

New Zealand White rabbits were purchased from Harlan Laboratories (Haslett, MI, USA) or were 122 

generously provided by Dr. Yuqiang Chen (University of Michigan Medical School, Ann Arbor, MI, 123 

USA). Body mass and random-fed blood glucose were recorded weekly. For euthanasia, rabbits were first 124 

sedated by intramuscular injection of ketamine (40 mg/kg) and xylazine (5 mg/kg) before euthanizing by 125 

intravenous injection of pentobarbital (65 mg/kg) via the marginal ear vein. C57BL/6J mice were bred in-126 

house as described previously (2). Body fat, lean mass, and free fluid were measured in conscious mice 127 

using an NMR analyzer (Minispec LF90II; Bruker Optics, Billerica, MA, USA). The University of 128 

Michigan Committee on the Use and Care of Animals approved all animal experiments, with daily care of 129 

mice and rabbits overseen by the Unit for Laboratory Animal Medicine (ULAM). 130 

 131 

Caloric restriction 132 

For moderate CR in rabbits (Fig. 1-2; Supplemental Fig. 1-2), 15-week-old male rabbits (3.14 ± 0.19 kg, 133 

mean ± SD) were randomly assigned into control (n=5) and CR (n=6) diet groups. Each group was fed a 134 

high-fiber diet (LabDiet 5326). Control rabbits received 100 g/day (31.91 ±0.19 g/kg body mass/day; 135 

mean ±SD) whereas CR rabbits received 70 g/day (23.00 ±0.35 g/kg body mass/day; mean ±SD), 136 

consistent with 30% CR that was found previously to drive MAT expansion in mice (2, 15). For extensive 137 

CR in rabbits (Fig 3-4; Supplemental Fig. 3), young males (1.04 ± 0.09 kg, mean ±SD) were fed ad 138 

libitum from 5 to 6 weeks of age to establish baseline food intake. Rabbits were then randomly assigned 139 

to control (n=6) or CR (n=6) diet groups. From 6-13 weeks of age, control rabbits were fed ad libitum 140 

(68.26 ± 4.82 g/kg body mass/day; mean ±SD) whereas CR rabbits were fed 40-50 g/day depending on 141 

body mass (30.65 ± 4.92 g/kg body mass/day; mean ±SD); this is consistent with the 50-70% reduction of 142 

ad libitum food intake used in recent rabbit CR studies (37, 38). For comparisons between the moderate 143 

and extensive CR cohorts, the following differences are worth considering: firstly, the moderate CR 144 
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animals were older, and therefore heavier; secondly, control-fed rabbits in the extensive CR cohort were 145 

fed ad libitum, while those in the moderate CR cohort were fed 100 g/day (consistent with ULAM 146 

guidelines). These differences likely explain why percent fat pad mass is greater in the extensive CR 147 

controls than in the moderate CR control rabbits (Fig. 1B vs Fig. 3B). To avoid malnutrition associated 148 

with micronutrient deficiency, both groups were fed throughout with a complete diet for growing rabbits 149 

(LabDiet 5321). The CR protocol for C57BL/6J mice was described previously (2). 150 

 151 

Blood collection and serum hormone analysis 152 

Blood was sampled from the marginal ear artery of rabbits or the lateral tail vein of mice using Microvette 153 

CB 300 capillary collection tubes (Sarstedt, Newton, NC, USA). To obtain serum, blood samples were 154 

allowed to clot on ice for two hours before centrifuging at 3,800 RCF for 5 min at 4 ºC. Serum leptin was 155 

determined using an ELISA kit (catalog no. MOB00) from R&D Systems Inc. (Minneapolis, MD, USA). 156 

Total and HMW serum adiponectin were determined using an ELISA kit (catalog no. 47-ADPHU-E01) 157 

from Alpco (Salem, NH, USA). ELISA kits to determine concentrations of corticosterone (catalog no. 158 

ADI-900-097) and cortisol (catalog no. ADI-900-071) were from Enzo Life Sciences, Inc (Exeter, UK). 159 

 160 

Analysis of bone morphology by µCT 161 

Femoral heads of rabbits were surgically isolated and embedded in 1% agarose and scanned using a µCT 162 

system (µCT100 Scanco Medical, Bassersdorf, Switzerland). Agarose-embedded femoral heads of rabbits 163 

were placed in a 48 mm diameter tube prior to scanning the femoral neck using the following settings: 164 

voxel size 36 µm, 70 kVp, 114 µA, 0.5 mm AL filter, and integration time 500 ms. Rabbit trabeculae 165 

were analyzed by contouring the inner trabecular compartment using the manufacturer’s software 166 

(Analysis #15: trabecular, threshold 220), starting 20 slices away from the growth plate and contouring 167 

every 10 slices for a total of 30 slices. Density measurements were calibrated to the manufacturer's 168 

hydroxyapatite phantom. Analysis was performed using the manufacturer’s evaluation software. 169 

 170 
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Real-time quantitative PCR (qPCR) 171 

Total RNA was isolated from tissues using RNA STAT60 reagent (Tel-Test Inc, Friendswood, TX, USA) 172 

according to the manufacturer’s instructions. Reverse transcription, primer design and qPCR were 173 

performed as described previously (39). Primers for rabbit Lep, Adipoq, Pparg, Cebpa, Ppia and Tbp 174 

were described previously (2). Sequences for other primers (5`-3`) are as follows: Ero1l, (F) 175 

TTGGCTAGAAGGCCTGTGTG, (R) GCCTTCTCCCTCGGTCAAAA; Erp44, (F) 176 

CTCCAGCAGATTGCCCTGTT, (R) GGGTGGACTGCTTGCTACAT; Rab11fip1, (F) 177 

CAGTACGGCAGAAGCTCCAA, (R) CCGAGGGGCTGTATTTCTTCA. 178 

 179 

Immunoblot analysis 180 

To detect total adiponectin in sera, samples were reduced and denatured by mixing with 4X SDS loading 181 

buffer, incubating at 95 ºC for 5 min, and cooling on ice for 1 min before separating by SDS-PAGE, as 182 

described previously (40). To isolate total protein, tissues were first pulverized in liquid nitrogen using a 183 

pestle and mortar. Pulverized tissues were then mixed with lysis buffer (1% SDS, 12.7 mM EDTA, 60 184 

mM Tris-HCl; pH 6.8) heated to 95 ºC, and homogenized by sequential passaging through 21-gauge and 185 

26-gauge needles. Lysates were then centrifuged at 20,000 RCF for 15 min at 4 ºC, lipid layers were 186 

discarded and supernatants transferred to fresh tubes and stored at -80 ºC. Protein concentration in tissue 187 

lysates was estimated using the BCA protein assay (Thermo Scientific, Waltham, MA, USA). SDS-PAGE 188 

and immunoblotting of tissue lysates was done as described previously (39). Mouse monoclonal anti-189 

adiponectin (MA1-054) and rat monoclonal anti-α-tubulin (MA1-80017) were from Thermo Scientific. 190 

Mouse monoclonal anti-perilipin A (#4854) was from Vala Sciences (San Diego, CA, USA). 191 

 192 

Isolation of BM, MAT, or RM 193 

To visualize the spatial distribution of MAT and red marrow (RM) in situ, humeri, tibiae, and femurs 194 

were longitudinally bisected using a Dremel rotary tool with a #409 cutoff wheel (Robert Bosch Tool 195 
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Corporation, Addison, IL, USA); a constant drip of sterile USP-grade water was used during cutting to 196 

prevent overheating. MAT or RM was then removed using a stainless steel spatula. To isolate MAT from 197 

radii or ulnae, epiphyses were removed by lateral incisions with the Dremel tool, thereby allowing access 198 

to the marrow cavity. BM was then extruded by first tracing the perimeter of the marrow cavity with a 2-199 

inch, 21-gauge needle, and subsequently scraping the BM out using a stainless steel spatula. 200 

 201 

Triacylglycerol content of rabbit femoral BM 202 

One femur of each rabbit was bisected and whole BM removed. BM plugs were then frozen on dry ice 203 

before cryopulverization in liquid nitrogen using a pestle and mortar. Total lipid was then extracted from 204 

~56 mg of each sample using the Folch method (41) as follows: 1), in a glass vial, mix sample with 1 mL 205 

methanol and dissolve by sonication for 4 x 5 min, vortexing between each sonication; 2), mix 0.5 mL of 206 

tissue/methanol homogenate with 1 mL chloroform and vortex for 30 seconds; 3), add 0.5 mL of 0.1N 207 

HCl and vortex the vial to mix; 4), centrifuge for 10 min at 500 RCF; 5) remove the top layer and the 208 

protein/debris interphase carefully by aspiration under mild vacuum; 6), wash the lower organic layer by 209 

adding 0.5mL of 50% methanol and vortex to mix; 7), centrifuge for 3 min at 12,000 RCF; 8), discard 210 

upper layer using vacuum aspirator; 9), repeat steps 6-8; 10), transfer 0.3 mL of each sample to a new 211 

glass vial and evaporate solvent using nitrogen gas; 11), re-suspend the remaining lipid in 100 µL 212 

chloroform. These lipid samples were then separated by thin layer chromatography on a silica gel plate; 213 

the triacylglycerol bands were then identified and excised. This portion was then extracted from the silica 214 

gel and resuspended in 500 µL of 68% ethanol (357 µL of 95% ethanol, plus 143 µL of isotonic saline). 215 

The triacylglycerol concentration in 20 µL of each sample was then determined using the Triglyceride 216 

Determination Kit (Sigma Aldrich) based on the manufacturer’s instructions.  217 

 218 

Histology and analysis of adipocyte morphology 219 

Intact pieces of WAT, MAT, and RM were fixed in 10% neutral-buffered formalin, paraffin-embedded, 220 

sectioned, and stained with H&E prior to determination of adipocyte size distribution, as described 221 
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previously (42). Analysis of MAT and RM was done without reference to the directionality or orientation 222 

within the bone. 223 

 224 

Osmium tetroxide staining 225 

Mouse tibiae were stained with osmium tetroxide (Electron Microscopy Sciences #19170) and MAT was 226 

then visualized by µCT, as described previously (2). MAT volume in distinct tibial regions was then 227 

quantified and is presented relative to total tibial marrow volume, as described previously (43). Osmium 228 

tetroxide staining could not be used for quantitation of MAT volume in rabbit bones, because the osmium 229 

tetroxide is unable to stain beyond the periphery of these large tissues, especially those that are densely 230 

packed with fat (E. Scheller, unpublished observations).  231 

 232 

Statistical Analysis 233 

Data are represented as box and whisker plots overlaid with individual values, or as mean ± standard 234 

deviation (for data where box and whisker plots would be too cluttered). For box and whisker plots, the 235 

box extends from the 25th to 75th percentiles, with the central line representing the median and the 236 

whiskers showing the minimum and maximum values. Statistical analysis was done using GraphPad 237 

Prism 6 software (GraphPad Software, La Jolla, CA). Significant differences in body mass, tissue mass, 238 

circulating leptin, circulating adiponectin, circulating corticosterone, transcript expression, femoral head 239 

bone characteristics, BM triacylglycerol, bone length, body composition, and MAT volume were assessed 240 

using two-sample t-tests. For moderate CR rabbits, differences in circulating cortisol were assessed using 241 

two-sample t-tests; however, for extensive CR rabbits, cortisol concentrations were non-normally 242 

distributed, and therefore significant differences were assessed using the Mann-Whitney U test (Fig. 6D). 243 

Significant differences in adipocyte size were assessed by ANOVA with a Tukey post-test for multiple 244 

comparisons. The D’Agostino test confirmed that adipocyte areas were normally distributed across all 245 

tissues for control and CR rabbits. A p-value of < 0.05 was considered statistically significant. 246 
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RESULTS 247 

Circulating adiponectin does not increase during moderate CR in rabbits 248 

We previously used rabbits to characterize expression and secretion of adiponectin in MAT, 249 

because, unlike mice or rats, this species allows isolation of relatively large and intact MAT samples (2). 250 

Thus, to investigate further if CR affects adiponectin production by MAT, we pursued CR studies in 251 

rabbits. We fed rabbits in the CR group 30% less food than their control counterparts, consistent with the 252 

extent of CR used in our previous mouse studies (2). Herein, this 30% CR regimen is described as 253 

‘moderate’ CR. As expected, moderate CR was associated with decreased body mass, circulating leptin, 254 

and mass of WAT in inguinal (iWAT), gonadal (gWAT), and perirenal (pWAT) depots (Fig. 1A-C; 255 

Supplemental Fig. 1). CR-associated bone loss was also apparent, with µCT of femoral heads revealing 256 

that CR-fed rabbits had significantly decreased bone volume fraction (BVF), connectivity density (Conn. 257 

Dens), and bone mineral content (BMC) compared to controls (Table 1). To next investigate if CR 258 

impacts adiponectin production by MAT, and how this compares to effects in WAT, we first analyzed 259 

expression of adiponectin mRNA (Adipoq). As a positive control, we also measured expression of leptin 260 

(Lep), which is known to be decreased in WAT during fasting or CR (44-47). As shown in Fig. 1D, CR 261 

led to significantly decreased Lep expression in iWAT, whereas adiponectin (Adipoq) expression was not 262 

significantly altered by CR. Similar effects were observed in gWAT and pWAT (data not shown). These 263 

findings are consistent with observations in rodents and humans (44-50). In tibial MAT, CR was also 264 

associated with decreased expression of Lep but not Adipoq (Fig. 1E). To begin assessing potential effects 265 

on adiponectin secretion, we next analyzed expression of factors known to regulate this process. Ero1-Lα 266 

is an ER chaperone that promotes adiponectin secretion, whereas ERp44 and Rab11-FIP1 inhibit 267 

adiponectin secretion (51-53). We found that CR did not affect Ero1l, Erp44, or Rab11fip1 expression in 268 

iWAT (Fig. 1D). Expression of Ero1l and Erp44 in tibial MAT was similarly unaffected, whereas 269 

Rab11fip1 expression was significantly higher in MAT of CR-fed rabbits (Fig. 1E). These observations 270 

are consistent with the concept that adiponectin secretion from WAT does not increase during CR (54), 271 
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and suggest that this is also true for tibial MAT. However, there is often a disparity between adiponectin 272 

transcript expression and circulating adiponectin levels (48, 50, 55). Thus, we next used immunoblotting 273 

to assess total adiponectin in serum, expecting that, as in rodents and humans (48, 56), this would increase 274 

with moderate CR. Counter to these expectations, total serum adiponectin did not differ between control 275 

and CR-fed rabbits (Fig. 1F-G). Thus, moderate CR in rabbits exerts expected effects on body mass, fat 276 

mass, bone mass, circulating leptin, and expression of leptin and adiponectin in WAT; however, moderate 277 

CR in rabbits is not associated with hyperadiponectinemia. 278 

 279 

MAT expansion does not occur during moderate CR in rabbits 280 

Our recent work reveals that in mice, CR-associated hyperadiponectinemia is blunted when MAT 281 

expansion is impaired (2). Therefore, the lack of hyperadiponectinemia observed above suggests that 282 

MAT expansion might be limited or absent during moderate CR in rabbits. To address this possibility, we 283 

bisected bones of these animals and characterized BM adiposity. The BM of each group appeared grossly 284 

similar, with no differences in the amount of fatty yellow marrow in humeri and femurs (Fig. 2A-B), or in 285 

radii, ulnae, and tibiae (data not shown). To further assess MAT content, we analyzed whole femoral BM 286 

for expression of transcripts and proteins typical of BM adipocytes, as well as total triacylglycerol 287 

content; unlike the above qPCR analysis of tibial MAT (Fig. 1E), these analyses sought to determine 288 

adipocyte content in more heterogeneous femoral BM samples. Control and moderate CR-fed rabbits had 289 

similar BM expression of Pparg and Lep transcripts (Fig. 2C), while expression of Perilipin A protein 290 

was also similar (Fig. 2D). In contrast, moderate CR was associated with a trend for decreased Cepba 291 

expression and significantly lower Adipoq expression (Fig. 2C). Similarly, total femoral BM 292 

triacylglycerol content tended to be lower with moderate CR (Fig. 2E). These observations suggest that 293 

moderate CR does not lead to MAT expansion. 294 

To fully determine the impact of CR on BM adiposity throughout the skeleton, we analyzed 295 

adipocyte size distribution in MAT and red marrow (RM) obtained from different skeletal sites (Fig. 2F-296 

G; Supplemental Fig. 2). As shown in Supplemental Fig. 2, CR did not affect adipocyte size in any MAT 297 
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or RM depot analyzed, except in ulnae, where CR led to a small but significant increase in adipocyte size 298 

(Supplemental Fig. 2H). This suggests depot-specific variation in MAT responsiveness to CR. Indeed, in 299 

CR-fed rabbits the adipocytes in distal MAT depots (tibia, radius, ulna) tended to be larger than those in 300 

proximal MAT (femur, humerus) (Fig. 2F). For further comparison, we also analyzed adipocyte sizes in 301 

WAT. In contrast to RM or MAT, CR led to markedly decreased adipocyte size in iWAT, gWAT, and 302 

pWAT (Fig. 2G; Supplemental Fig. 2I). WAT adipocytes were also significantly larger than BM 303 

adipocytes in control-fed rabbits, but not after CR (Fig. 2G). Thus, adipocyte size and responsiveness to 304 

CR differs both between BM and WAT, and also across different MAT depots. 305 

Together, these analyses of BM triacylglycerol content, adipocyte marker expression, and 306 

adipocyte size demonstrate that in rabbits, moderate CR does not lead to MAT expansion. 307 

 308 

Extensive CR in rabbits leads to BM adipocyte hypotrophy, suggesting loss of MAT 309 

The lack of hyperadiponectinemia and MAT expansion during these moderate CR studies was 310 

unexpected. Given that effects of CR are dependent upon the degree of restriction (47, 57, 58), one 311 

possibility is that that the extent of moderate CR was insufficient to drive hyperadiponectinemia or MAT 312 

expansion. Another possible explanation relates to the fact that our above studies were in skeletally 313 

mature rabbits, whereas previous research into CR-associated MAT expansion in mice has been done in 314 

young, growing animals (2, 15). To address these possibilities, we next investigated the effects of more 315 

extensive CR in a cohort of young, growing rabbits. As found above for moderate CR (Fig. 1), extensive 316 

CR was associated with significantly decreased body mass, fat pad mass, and circulating leptin (Fig. 3A-317 

C); however, each of these changes was more pronounced than those that occurred during moderate CR 318 

(Fig. 1A-E). Bone length was also markedly decreased with extensive CR (Fig. 3D), consistent with 319 

suppressed skeletal development observed in previous rabbit CR studies (59). Thus, extensive CR was 320 

associated with expected effects on body mass, peripheral adiposity, circulating leptin, and skeletal 321 
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biology. However, as found for moderate CR, extensive CR did not affect total circulating adiponectin 322 

(Fig. 3E-F).   323 

We next assessed BM adiposity. Upon bisecting bones for MAT isolation we were struck by the 324 

very dark appearance of BM in the extensive CR-fed rabbits (Fig. 4A-B), suggesting decreased BM 325 

adiposity in these animals. Indeed, we were unable to isolate intact pieces of MAT from extensive CR-fed 326 

rabbits, which prevented us from analyzing MAT adiponectin production in these animals. However, we 327 

could isolate small pieces of less pure MAT from the radius and ulna, and from distal regions of the 328 

humerus, femur, and tibia. Thus, to further assess effects of extensive CR on BM adiposity we analyzed 329 

adipocyte size distribution in these MAT samples, and in RM obtained from humeri, femurs, and tibiae. 330 

For comparison we also analyzed adipocyte sizes in WAT.  We found that extensive CR led to 331 

significantly reduced adipocyte size in each WAT depot; in humerus MAT and RM; and in femoral and 332 

tibial RM (Fig. 4C; Supplemental Fig. 3). There was also a trend for decreased adipocyte size in radial 333 

MAT (P = 0.068) and tibial MAT (P = 0.077). Such hypotrophy suggests lipolytic breakdown of BM 334 

adipocytes and/or impaired MAT development, possibilities that remain to be formally tested; however, 335 

these possibilities are highly likely based on current understanding of adipose tissue biology, and are 336 

consistent with the conclusion that extensive CR leads to MAT depletion. One notable exception was the 337 

ulna, where CR did not affect adipocyte size (Supplemental Fig. 3H). As noted for moderate CR (Fig. 338 

2G), in extensive CR rabbits the distal MAT depots (tibia, radius, ulna) tended to have larger adipocytes 339 

than more proximal depots (femur, humerus) (Fig. 4C). Differences in adipocyte size were even more 340 

pronounced between BM and WAT, with gWAT, iWAT, and pWAT of control-fed rabbits having 341 

significantly larger adipocytes than any of the RM or MAT depots (Fig. 4C). Thus, as found for the 342 

moderate CR cohort, in control rabbits BM adipocytes are smaller than WAT adipocytes, and the 343 

response of BM adipocytes to extensive CR varies across the different skeletal sites. Ultimately, both 344 

moderate CR and extensive CR led to decreased circulating leptin without resulting in MAT expansion. 345 

 346 
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MAT expansion is not associated with hypoleptinemia during CR in female mice 347 

The above findings demonstrate that hypoleptinemia per se is not sufficient to cause MAT expansion, at 348 

least in rabbits. To determine the relevance of this finding to other species, we next investigated the 349 

relationship between CR, leptin, and MAT expansion in mice. We fed male and female C57BL/6J mice a 350 

control or 30% CR diet from 9-15 weeks of age and analyzed MAT, total adiposity, lean mass, and 351 

circulating leptin. As expected, in both sexes CR was associated with decreased body mass (Supplemental 352 

Fig. 4A-B), hyperadiponectinemia (Supplemental Fig. 4C, F), and significant MAT expansion, as 353 

assessed by analysis of osmium tetroxide-stained tibiae (Fig. 5A-B). MAT expansion occurred 354 

predominantly in the proximal tibia, from the growth plate to tibia-fibula junction, consistent with this 355 

region containing ‘regulated’ MAT (rMAT) that is more responsive to external stimuli than the 356 

‘constitutive’ MAT (cMAT) in the distal tibia (43). However, other effects of CR differed between males 357 

and females. Thus, in males CR led to decreases in total adiposity and the masses of iWAT, gWAT and 358 

liver, both in terms of absolute mass (Fig. 5C-D) and percent body mass (Supplemental Fig. 4D-E). 359 

Consistent with this decreased adiposity, circulating leptin was markedly lower in CR-fed males 360 

compared to their control counterparts (Fig. 5E). In contrast, in females CR did not decrease the absolute 361 

masses of iWAT, gWAT, or total body fat, despite decreased body mass (Fig. 5F-G; Supplemental Fig. 362 

4B). As such, CR in females was associated with significantly increased body fat percentage and percent 363 

iWAT mass, while percent lean mass was decreased (Supplemental Fig. 4G-H). Thus, unlike in male 364 

mice, CR in female mice led to loss of lean mass without decreasing WAT mass or total adiposity. 365 

Consistent with this maintenance of fat mass, circulating leptin did not differ between CR-fed females 366 

and their control counterparts (Fig. 5H). These observations demonstrate that in female mice, CR-367 

associated MAT expansion is not associated with hypoleptinemia, suggesting that the latter is not required 368 

for MAT expansion. 369 

 370 

 371 
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MAT expansion during CR is associated with increased circulating glucocorticoids 372 

The above observations show that MAT expansion occurs during CR in mice but not in rabbits, and that 373 

this is not associated with hypoleptinemia. Therefore, we next investigated if there is another endocrine 374 

basis for this differential response. One well-established effect of CR is to increase levels of circulating 375 

glucocorticoids, such as cortisol in humans and corticosterone in rodents (25, 60). In contrast, one study 376 

finds that glucocorticoids are not increased during CR in rabbits (61). This supports the possibility that 377 

differential MAT expansion during CR in mice and rabbits might relate to divergent effects on circulating 378 

glucocorticoids. Therefore, we next analyzed circulating glucocorticoids in our cohorts of mice and 379 

rabbits with or without CR. Consistent with previous studies, serum concentrations of corticosterone, the 380 

major circulating glucocorticoid in rodents, were increased during CR in male and female mice (Fig. 6A-381 

B). In contrast, circulating cortisol and corticosterone were unaltered during moderate or extensive CR in 382 

rabbits (Fig. 6C-F). These observations support the possibility that increases in circulating glucocorticoids 383 

are a stimulus for CR-associated MAT expansion.384 
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DISCUSSION 385 

 In the present study our original aim was to determine how CR affects adiponectin production by 386 

MAT. However, in pursuing this goal we found, unexpectedly, that CR in rabbits does not lead to 387 

increased circulating glucocorticoids, MAT expansion, or hyperadiponectinemia. Conversely, in female 388 

mice CR-associated MAT expansion occurs without decreased circulating leptin, whereas in both males 389 

and females CR is associated with increased serum corticosterone. Together, these observations provide 390 

insights into the mechanisms of MAT expansion, the impact of MAT on bone remodeling, and the 391 

potential function of MAT as an endocrine organ. 392 

 393 

Unexpected effects of CR in rabbits  394 

The lack of MAT expansion during moderate or extensive CR in rabbits was unexpected, because 395 

increased BM adiposity during CR has been observed repeatedly in other species (18). However, while 396 

previous rabbit studies report maintenance of BM adipocyte size even after 10-21 days’ starvation (13, 397 

14), there are no reports of increased MAT during CR in rabbits. Instead, MAT loss has been noted in 398 

rabbits when food deprivation extends beyond 25 days (62, 63), which is far shorter than the 7-week 399 

timeframe of our CR studies. Thus, extensive CR can lead to MAT loss in rabbits. Similarly, in anorexia 400 

nervosa MAT expansion occurs in patients with more minimal weight loss, whereas BM lipid content and 401 

adipocyte size decrease in patients with the greatest weight loss (17). In severely anorexic patients, BM 402 

becomes serous-like, with atrophy of adipocytes and hematopoietic cells (64). MAT loss following 403 

extensive CR has also been reported in other species (65). One limitation of our extensive CR studies is 404 

that we did not sample total BM from any bones; hence, unlike for the moderate CR rabbits, we could not 405 

analyze other markers of MAT content, such as total triacylglycerol. It is also plausible that extensive CR 406 

causes BM adipocyte hypotrophy not because of MAT loss, but as a result of constraints imposed by 407 

decreased bone size (Fig. 3D); however, this is perhaps unlikely given that CR also increases BM volume 408 

via bone loss (2), which may compensate for decreases in bone size. Ultimately, the marked BM 409 

adipocyte hypotrophy in extensive CR rabbits, together with the darker appearance of BM in this group, 410 
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supports the conclusion of MAT loss in this context. Together with the preclinical and clinical studies 411 

described above, our findings demonstrate that MAT depletion can occur when the degree and duration of 412 

CR are sufficient. 413 

Although CR can cause MAT loss, we find that CR-associated adipocyte hypotrophy is far 414 

greater in WAT than in MAT. Thus, MAT adipocytes might be more resistant to lipolysis than adipocytes 415 

in WAT. Moreover, it is notable that, in moderate and extensive CR, adipocytes in WAT and MAT reach 416 

a similar size. This suggests that MAT adipocyte size might represent a minimum threshold for 417 

adipocytes, both in MAT and WAT, which is defended in catabolic states. 418 

 419 

Sexually dimorphic effects of CR 420 

In addition to the lack of MAT expansion in rabbits, our finding that CR does not decrease WAT 421 

mass or circulating leptin in female mice was initially unexpected; however, our observations are 422 

consistent with previous CR studies in female C57BL/6 mice. For example, Varady et al observe 423 

increased scWAT and unaltered leptin after 25% CR from 7-11 weeks of age (66); Fenton et al report no 424 

change in leptin following 30% CR from 6-16 weeks of age (67); and Li et al find increased adiposity 425 

after 5% CR from 13-16 or 15-19 weeks of age (68). Our finding that CR decreases adiposity and 426 

circulating leptin in male C57BL/6J mice is also consistent with previous studies (15, 69, 70), which 427 

suggests that responses to CR in C57BL/6J mice are sex-specific. Similarly, Shi et al showed that CR in 428 

FVBN mice leads to hypoleptinemia and decreased scWAT mass in males but not females (71). Such 429 

sexually dimorphic effects of CR have also been noted in many other species (72-74). In humans, several 430 

CR studies report greater loss of total or visceral fat mass in men than in women (75-78); however, this 431 

has not been found in all studies (79, 80), and therefore the relevance of such sexual dimorphism to 432 

humans remains to be established. Given the extensive interest in potential benefits of CR to human 433 

health (81), this issue clearly warrants further investigation. 434 

 435 

 436 
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Endocrine factors as potential mediators of CR-associated MAT expansion 437 

Our observations in rabbits and female mice suggest that hypoleptinemia per se is neither necessary nor 438 

sufficient for MAT expansion during CR, which contradicts the hypothesis that hypoleptinemia is a key 439 

driver of CR-associated MAT expansion (18). This hypothesis is indirectly supported by observations that 440 

leptin-deficient mice have increased MAT, which decreases following exogenous leptin administration 441 

(26, 32-34, 82). This leptin supplementation approach could also be used during CR to directly test if 442 

hypoleptinemia is required for MAT expansion. Here, it would be important to ensure that such leptin 443 

supplementation does not increase circulating leptin to supraphysiological concentrations. Indeed, 444 

exogenous leptin administration also leads to profound MAT loss in animals that are not leptin-deficient 445 

(34, 82, 83). In such states of leptin sufficiency, effects of exogenous leptin typically depend upon 446 

administration of high doses that elevate circulating leptin to supraphysiological concentrations (84). In 447 

contrast, our results demonstrate that hypoleptinemia alone, within a normal physiological range, is not 448 

sufficient for CR-associated MAT expansion in rabbits, while lack of hypoleptinemia, without resorting 449 

to exogenous leptin treatment, does not prevent MAT expansion during CR in female mice. Moreover, 450 

estrogen deficiency is associated with increases in MAT and circulating leptin (4, 85), demonstrating that 451 

hypoleptinemia is not required for MAT expansion in other contexts. Nevertheless, it remains possible 452 

that our observations in rabbits and female mice are species-, sex-, age-, and/or protocol-specific. For 453 

example, we cannot exclude the possibility that hypoleptinemia contributes to MAT expansion in male 454 

C57BL/6J mice, or that moderate CR would promote MAT expansion in younger rabbits. Therefore, there 455 

is clear utility in pursuing leptin supplementation experiments to directly test if hypoleptinemia is 456 

required for MAT expansion during CR.  457 

 The basis for our observed species-specific differences in MAT expansion remains to be firmly 458 

established. As described in the introduction, several endocrine changes have been proposed to contribute 459 

to MAT expansion during CR, including decreased IGF1 and increases in FGF21 or glucocorticoids. 460 

Circulating FGF21 increases during short-term fasting (23, 24), but recent studies demonstrate no 461 

differences during longer-term CR (86). This argues against a role of FGF21 excess in driving MAT 462 
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expansion during CR. In contrast, decreased IGF1 is well established during anorexia nervosa in humans 463 

(60) and CR in rodents (58), supporting the possibility that this contributes to MAT expansion; however, 464 

IGF1 also decreases during CR in rabbits (87), and therefore this is unlikely to account for the differences 465 

in MAT expansion observed between rabbits and mice. Moreover, CR in non-anorexic humans was 466 

recently shown to decrease bone mass without affecting circulating IGF1 (88), demonstrating that 467 

decreased IGF1 is not necessary for effects of CR on bone.  468 

 Our present findings suggest that the species-specific differences in MAT expansion may relate to 469 

effects on circulating glucocorticoids. CR-induced increases in circulating glucocorticoids are well 470 

established in rodents and humans, but only one prior study reports the lack of this response in rabbits 471 

(61). Our observations therefore build on this work by further demonstrating that, unlike in other species, 472 

circulating cortisol and corticosterone do not increase during CR in rabbits. Given that glucocorticoids 473 

increase BM adiposity (11), our findings support the possibility that increased circulating glucocorticoids 474 

are necessary for CR-associated MAT expansion. We are currently investigating this hypothesis further. 475 

 476 

Depot-specific differences in MAT characteristics 477 

Two previous studies report that adipocytes in pWAT are larger than those in femoral RM (14, 478 

89), consistent with our present findings that BM adipocytes are smaller than those in WAT. However, 479 

our study is the first to comprehensively compare BM adipocyte sizes across different skeletal sites. We 480 

found that adipocytes in distal regions of the skeleton (tibia, radius, ulna) tend to be larger than those in 481 

MAT from more proximal depots (femur, humerus). Responsiveness to CR also varies across these sites: 482 

unlike adipocytes in more proximal BM regions, adipocytes in ulnal MAT undergo hypertrophy during 483 

moderate CR and resist hypotrophy during extensive CR. This is consistent with an early study of 484 

starvation in rabbits, which shows that BM adiposity decreases more in proximal bones (e.g. humeri 485 

,femurs) than in distal regions (e.g. tibiae, radii, ulnae) (63). This is also consistent with our recent 486 

research that identifies regionally distinct MAT subtypes with different characteristics: constitutive MAT 487 

(cMAT) exists at distal sites and is relatively refractory to external stimuli, whereas regulated MAT 488 
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(rMAT) is interspersed within RM at proximal skeletal sites and is more responsive to external stimuli, 489 

such as cold exposure (43). Our present analyses confirm and extend these observations by revealing that 490 

CR-associated MAT expansion predominantly occurs within rMAT, while increases in cMAT are far less 491 

pronounced (Fig. 5A-B). Determining if these site-specific differences extend to other MAT properties 492 

might provide fundamental insights into MAT formation and function.  493 

 494 

Relationship between MAT expansion and bone loss 495 

Our results shed further light on the relationship between MAT and bone. Given that MAT is 496 

increased in osteoporosis (3), BM adipocytes have been postulated to directly inhibit bone formation 497 

and/or promote bone resorption (90-93). Indeed, increased MAT volume is now considered a clinical risk 498 

factor for fracture (94). However, this concept is coming under scrutiny following numerous recent 499 

studies (95). For example, across several inbred mouse strains there is no correlation between BM 500 

adipocyte numbers and femoral bone mineral density (96), while blocking MAT expansion does not 501 

prevent bone loss during type 1 diabetes or ovariectomy (33, 97, 98). Our observations in rabbits further 502 

demonstrate that MAT expansion is not necessary for bone loss during CR. Such knowledge has direct 503 

clinical relevance to diseases such as anorexia nervosa, which is associated with bone loss and life-long 504 

increases in fracture risk (3, 99). It remains possible that altered MAT characteristics, independent of 505 

MAT expansion, contribute to bone loss in osteoporosis, type 1 diabetes, CR, or other conditions. 506 

However, our present study provides further evidence that MAT expansion per se does not promote bone 507 

loss.  508 

 509 

Potential endocrine functions of MAT 510 

Our previous research supports the concept that MAT is an endocrine organ that contributes to 511 

hyperadiponectinemia during CR (2). This conclusion is partly based on the observation that increased 512 

MAT is required for full increases in circulating adiponectin during CR, at least in mice. Herein, we find 513 

that neither MAT nor circulating adiponectin increases during CR in rabbits, while in mice the increases 514 
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in MAT and circulating adiponectin are greater in females than in males. These observations further 515 

support the concept that CR-associated hyperadiponectinemia is linked to MAT expansion. Our rabbit 516 

studies also reveal that MAT leptin expression decreases during CR, a phenomenon well established in 517 

WAT (44, 47). In contrast, we find that CR does not increase adiponectin expression in MAT or WAT. 518 

Our data also support the possibility that secretion of adiponectin is not increased, at least based on the 519 

expression of known regulators of adiponectin secretion. Similar observations have been made for WAT 520 

of rodents and humans (47-50, 54); however, given the lack of hyperadiponectinemia and MAT 521 

expansion during CR in rabbits, the relevance of these observations to MAT of humans and other species 522 

remains unclear. This uncertainty, as well as the inability to isolate sufficient MAT from extensive CR 523 

rabbits, limited our ability to more comprehensively investigate the endocrine properties of MAT. Thus, 524 

establishing how CR affects MAT’s potential endocrine functions will require further studies in other 525 

species. Such research will be crucial if we are to better understand MAT’s nascent role as an endocrine 526 

organ, as well as the impact of MAT on human health and disease.527 
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FIGURE LEGENDS 815 

 816 

Figure 1 – Circulating adiponectin does not increase during moderate CR in rabbits. Adult male 817 

rabbits were fed a control or 30% CR diet from 15 to 22 weeks of age, as described in Materials and 818 

Methods. (A) Body mass was measured weekly and is presented relative to body mass at 15 weeks of age. 819 

(B-G) After 7 weeks on CR or control diet, rabbits were euthanized and fat pads, serum, WAT, and MAT 820 

were isolated. (B) WAT masses were recorded at necropsy. (C) Serum leptin concentrations, as 821 

determined by ELISA. (D-E) Total RNA was isolated from iWAT (D) and tibial MAT (E). Expression of 822 

the indicated transcripts was determined by qPCR and normalized to Ppia expression. (F) Immunoblot of 823 

total adiponectin in sera from 22-week-old rabbits. (E) Densitometry was used to quantify serum 824 

adiponectin from (F). Data in (A) are reported as mean ± SD of 5 control and 6 CR rabbits. All other 825 

graphs are box and whisker plots. Statistically significant differences between control and CR rabbits are 826 

indicated as follows: * = P < 0.05; ** = P < 0.01; *** = P < 0.001. 827 

 828 

Figure 2 – Bone marrow adiposity does not increase during moderate CR in rabbits. Control and 829 

moderate CR rabbits (described in Figure 1) were euthanized and humeri, radii, ulnae, tibiae, and femurs 830 

were removed. (A, B) Representative images of bisected humeri (A) or femurs (B); scale bar, 1 cm. (C-E) 831 

Whole, intact BM was isolated from one femur of each rabbit, followed by isolation of total RNA (C), 832 

protein (D), or lipid (E). In (C), expression of the indicated transcripts was determined by qPCR and 833 

normalized to Ppia expression. In (D), perilipin A expression was determined by immunoblotting, with 834 

alpha-tubulin used as a loading control. In (E), total triacylglycerol was isolated by TLC and the 835 

concentration determined by an enzymatic assay. (F) Schematic showing the sites from which each 836 

sample of RM or MAT was isolated. (G) Adipocyte size distribution in the indicated RM, MAT, or WAT 837 

samples was determined by quantitative histomorphometry; median adipocyte size was then determined. 838 

Data in (C) and (E) represent 5 control and 6 CR rabbits, and are shown as box and whisker plots. In (C), 839 

statistically significant differences between control and CR rabbits are indicated by * (P < 0.05). Data in 840 
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(G) are reported as mean ±SD of the following numbers of samples: femur RM - 5 control, 6 CR; 841 

humerus RM - 5 control, 6 CR; tibia RM - 3 control, 5 CR; femur MAT - 5 control, 5 CR; humerus MAT 842 

- 4 control, 6 CR; tibia MAT - 5 control, 6 CR; radius MAT - 5 control, 6 CR; ulna MAT - 4 control, 6 843 

CR; gWAT, iWAT, or pWAT - 5 control and 6 CR. In (G), statistically significant differences in median 844 

adipocyte size were assessed by two-way ANOVA. Lower-case letters indicate statistical significance for 845 

the control tissues, while upper-case letters are used for the CR tissues; samples that do not share a 846 

common letter are significantly different from each other (P < 0.05). Significant effects of CR, within 847 

each tissue type, are indicated in Supplemental Figure 2. 848 

 849 

Figure 3 – Circulating adiponectin does not increase during extensive CR in rabbits. Male rabbits 850 

were fed ad libitum (control) or at 40% of ad libitum food intake (CR) from 6 to 13 weeks of age. (A) 851 

Body mass was measured weekly. (B-F) After 7 weeks of CR or control diet, rabbits were euthanized and 852 

fat pads, serum, and bones were isolated. (B) WAT masses were recorded at necropsy. (C) Serum leptin 853 

concentrations, as determined by ELISA. (D) Lengths of the indicated bones were recorded at necropsy. 854 

(E) Immunoblot of total adiponectin in sera from 13-week-old rabbits. (F) Densitometry was used to 855 

quantify serum adiponectin from (E). Data in (A) are reported as mean ± SD of 6 control and 6 CR 856 

rabbits. All other graphs are box and whisker plots. Statistically significant differences between control 857 

and CR rabbits are indicated as described for Figure 1. 858 

 859 

Figure 4 – BM adipocyte size is decreased during extensive CR in rabbits. Control and extensive CR 860 

rabbits (described in Figure 3) were euthanized and humeri, radii, ulnae, tibiae, and femurs were 861 

removed. (A, B) Representative images of bisected humeri (A) or tibiae (B); scale bar, 1 cm. (C) Median 862 

adipocyte size in the indicated RM, MAT, or WAT samples was determined by quantitative 863 

histomorphometry, as described for Figure 2G. Because of the extent of MAT and WAT loss, from some 864 

CR rabbits we were unable to detect any MAT for further analysis. Thus, data in (C) are reported as mean 865 
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±SD of the following numbers of samples: femur RM - 6 control, 4 CR; humerus RM - 5 control, 4 CR; 866 

tibia RM - 5 control, 4 CR; femur MAT - 4 control, 2 CR; humerus MAT - 4 control, 4 CR; tibia MAT - 6 867 

control, 4 CR; radius MAT - 5 control, 5 CR; ulna MAT - 6 control, 5 CR; gWAT - 5 control, 3 CR; 868 

iWAT - 6 control, 1 CR; pWAT, 5 control, 1 CR. Because femur MAT for the CR group is from only two 869 

rabbits, the SD of this group represents 0.7071 times the range of the two data points. Significant 870 

differences are indicated as described for Figure 2G. Data for iWAT and pWAT are from only one CR 871 

rabbit, and data for femur MAT are from only two CR rabbits; hence, ANOVA could not be used to 872 

assess statistical significance for these samples owing to uncertainty over the normality of data 873 

distribution.   874 

 875 

Figure 5 – In female mice CR increases MAT without decreasing circulating leptin. Male and female 876 

C57BL/6J mice were fed ad libitum or a 30% CR diet from 9-15 weeks of age. (A,B) Tibiae from 15-877 

week-old mice were stained with osmium tetroxide followed by µCT analysis. (A) Representative µCT 878 

scans of osmium tetroxide-stained tibiae. MAT appears as darker regions within each bone. (B) MAT 879 

volume within each tibial region was determined from µCT scans. (C,F) Body composition of 15-week-880 

old live mice was determined by NMR. (D,G) Masses of the indicated tissues were recorded at necropsy. 881 

(E,H) Blood was sampled from the lateral tail vein of 15-week-old live mice. Serum was isolated and 882 

leptin concentrations were determined by ELISA. Data in (C-D) and (F-G) are reported as mean ±SD of 883 

the following numbers of mice: male control, n = 6; male CR, n = 7; female control, n = 6; female CR, n 884 

= 5. All other graphs are box and whisker plots. For each sex, statistically significant differences between 885 

control and CR animals are reported as described for Figure 1. 886 

 887 

Figure 6 – MAT expansion during CR is associated with changes in circulating glucocorticoids. 888 

C57BL/6J mice (A,B) or New Zealand White rabbits (C-F) were fed control or CR diets, as described in 889 

Figures 1-5. Blood was sampled at the end of the CR protocols and concentrations of total corticosterone 890 

and cortisol were determined by ELISA. Data are presented as box and whisker plots. Within each group 891 
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(male mice; female mice; moderate CR rabbits; extensive CR rabbits) statistically significant differences 892 

between control and CR animals are reported as described for Figure 1. 893 
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TABLES 

 

 Control CR p-value 

TV (mm3) 35.91 ± 0.83 39.87 ± 3.59 0.352 

BV (mm3) 7.07 ± 3.32 7.05 ± 1.7 0.167 

BVF (%) 27.1 ± 2.0 21.6 ± 1.0 0.032 
Conn. Dens 9.62 ± 0.81 7.46 ± 0.47 0.041 
SMI 0.61 ± 0.10 0.88 ± 0.17 0.211 

Tb.N 2.60 ± 0.09 2.48 ± 0.05 0.271 

Tb.Th 0.174 ± 0.01 0.170 ± 0.01 0.513 

Tb.Sp 0.366 ± 0.02 0.40 ± 0.01 0.082 

BMC (mg HA) 286.70 ± 15.14 231.49 ± 10.85 0.014 

Table 1 – Characteristics of femoral heads of control and CR rabbits, as assessed 
by µCT. Abbreviations are as follows: TV, trabecular volume; BV, bone volume; BVF, 

bone volume fraction; Conn. Dens, connectivity density; SMI, structure model index; 

Tb.N, trabecular number; Tb.Th, trabecular thickness; Tb.Sp, trabecular spacing; BMC, 

bone mineral content; mg HA, milligrams of hydroxyapatite. 

 

Table 1 Click here to download Table MAT expansion in CR - Table
1.docx
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Figure 5 – In female mice CR increases MAT without 
decreasing circulating leptin
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Figure 6 – MAT expansion during CR is associated 
with changes in circulating glucocorticoids
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Supplemental'Figure'1'–'Body'mass'decreases'
during'moderate'CR'in'rabbits'

0 1 2 3 4 5 6 7
0.0
2.0
2.4

2.8

3.2

3.6

Weeks of CR

B
od

y 
m

as
s 

(k
g)

Control CR

*



0 2000 4000 6000 8000
0
10
20
30
40
50

Adipocyte area (µm2)

Fr
eq

ue
nc

y 
(%

to
ta

l a
di

po
cy

te
s) Control 

CR

0 2000 4000 6000
0

10
20
30
40
50

Adipocyte area (µm2)

Fr
eq

ue
nc

y 
(%

to
ta

l a
di

po
cy

te
s) Control 

CR

0 2000 4000 6000
0

10
20
30
40
50

Adipocyte area (µm2)

Fr
eq

ue
nc

y 
(%

to
ta

l a
di

po
cy

te
s) Control 

CR

0 2000 4000 6000
0

10

20

30

40

Adipocyte area (µm2)

Fr
eq

ue
nc

y 
(%

to
ta

l a
di

po
cy

te
s) Control 

CR

0 2000 4000 6000 8000
0

10

20

30

40

Adipocyte area (µm2)

Fr
eq

ue
nc

y 
(%

to
ta

l a
di

po
cy

te
s) Control 

CR

0 2000 4000 6000
0

10

20

30

40

Adipocyte area (µm2)

Fr
eq

ue
nc

y 
(%

to
ta

l a
di

po
cy

te
s) Control 
CR

0 2000 4000 6000
0

10

20

30

40

Adipocyte area (µm2)

Fr
eq

ue
nc

y 
(%

to
ta

l a
di

po
cy

te
s) Control 

CR

0 2500 5000 7500
0

10

20

30

40

Adipocyte area (µm2)

Fr
eq

ue
nc

y 
(%

to
ta

l a
di

po
cy

te
s) Control 

CR
***

Supplemental'Figure'2'–'Effects'of'Moderate'
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Supplemental Figure 4  – Changes in body mass, 
body composition, tissue mass and circulating adi-
ponectin during CR in mice
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Supplemental Data – Figure legends 

 

Supplemental Figure 1 – Body mass decreases during moderate CR in rabbits. Adult male 

rabbits were fed a control or 30% CR diet from 15 to 22 weeks of age, as described for Figure 1 

and in the Materials and Methods. Body mass was measured weekly and is reported as mean ± 

SD of 5 control and 6 CR rabbits. Statistically significant differences between control and CR-

fed rabbits were determined by 2-way ANOVA. The average body mass of control rabbits did 

not significantly differ to that of CR-fed rabbits at each time point; however, body mass of CR-

fed rabbits was significantly lower at weeks 1-7 of CR than at baseline (week 0), whereas body 

mass of control-fed rabbits did not differ over the course of the study.  

 

Supplemental Figure 2 – Effects of moderate CR on adipocyte sizes in BM and iWAT. RM, 

MAT, and WAT were sampled from the indicated depots and processed for histological analysis. 

Representative micrographs of H&E-stained sections of each tissue are shown.  For each 

tissue, adipocyte sizes were quantified by histomorphometry. Corresponding graphs of 

adipocyte size distribution are shown, with the frequency of adipocytes within each size range 

presented as mean ± SD of the following number of rabbits: femur RM - 5 control, 6 CR; 

humerus RM - 5 control, 6 CR; tibia RM - 3 control, 5 CR; femur MAT - 5 control, 5 CR; 

humerus MAT - 4 control, 6 CR; tibia MAT - 5 control, 6 CR; radius MAT - 5 control, 6 CR; ulna 

MAT - 4 control, 6 CR; iWAT - 5 control, 6 CR. Significant differences in median adipocyte size 

between control and CR rabbits are indicated as follows: * = P < 0.05; ** = P < 0.01; *** = P < 

0.001. 

 

 

 

 



 

Supplemental Figure 3 – Effects of extensive CR on adipocyte sizes in BM and gWAT. 

Samples were processed and data are presented as described for Supplemental Figure 1. For 

each tissue, data are presented as mean ± SD of the following numbers of rabbits: femur RM - 6 

control, 4 CR; humerus RM - 5 control, 4 CR; tibia RM - 5 control, 4 CR; femur MAT - 4 control, 

2 CR; humerus MAT - 4 control, 4 CR; tibia MAT - 6 control, 4 CR; radius MAT - 5 control, 5 CR; 

ulna MAT - 6 control, 5 CR; gWAT - 5 control, 3 CR. Because femur MAT for the CR group is 

from only two rabbits, the SD of this group represents 0.7071 times the range of the two data 

points. Significant differences in median adipocyte size between control and CR rabbits are 

indicated as described for Supplemental Figure 2. Data for femoral MAT is from only two CR 

rabbits, and therefore ANOVA could not be used to assess statistical significance for these 

samples owing to uncertainty over the normality of data distribution. 

 

Supplemental Figure 4 – Changes in body mass, body composition, tissue mass and 

circulating adiponectin during CR in mice. Male and female C57BL/6J mice were fed ad 

libitum or a 30% CR diet from 9-15 weeks of age, as described for Figure 5. (A,B) Body mass 

was recorded weekly. (C,F) Blood was sampled from the lateral tail vein of 15-week-old live 

mice. Serum was isolated and concentrations of total and HMW adiponectin were determined 

by ELISA. (D,G) Body composition of 15-week-old live mice was determined by NMR. (E,H) 

Masses of the indicated tissues were recorded at necropsy and their percentage of total body 

mass was determined. Data in (A-B), (D-E) and (G-H) are reported as mean ±SD of the 

following numbers of mice: male control, n = 6; male CR, n = 7; female control, n = 6; female 

CR, n = 5. Data in (C) and (F) are box and whisker plots. For each sex, statistically significant 

differences between control and CR animals are reported as described for Figure 1. 


