82 research outputs found
Supercurrent Spectroscopy of Andreev States
We measure the excitation spectrum of a superconducting atomic contact. In
addition to the usual continuum above the superconducting gap, the single
particle excitation spectrum contains discrete, spin-degenerate Andreev levels
inside the gap. Quasiparticle excitations are induced by a broadband on-chip
microwave source and detected by measuring changes in the supercurrent flowing
through the atomic contact. Since microwave photons excite quasiparticles in
pairs, two types of transitions are observed: Andreev transitions, which
consists of putting two quasiparticles in an Andreev level, and transitions to
odd states with a single quasiparticle in an Andreev level and the other one in
the continuum. In contrast to absorption spectroscopy, supercurrent
spectroscopy allows detection of long-lived odd states.Comment: typos correcte
Exciting Andreev pairs in a superconducting atomic contact
The Josephson effect describes the flow of supercurrent in a weak link, such
as a tunnel junction, nanowire, or molecule, between two superconductors. It is
the basis for a variety of circuits and devices, with applications ranging from
medicine to quantum information. Currently, experiments using Josephson
circuits that behave like artificial atoms are revolutionizing the way we probe
and exploit the laws of quantum physics. Microscopically, the supercurrent is
carried by Andreev pair states, which are localized at the weak link. These
states come in doublets and have energies inside the superconducting gap.
Existing Josephson circuits are based on properties of just the ground state of
each doublet and so far the excited states have not been directly detected.
Here we establish their existence through spectroscopic measurements of
superconducting atomic contacts. The spectra, which depend on the atomic
configuration and on the phase difference between the superconductors, are in
complete agreement with theory. Andreev doublets could be exploited to encode
information in novel types of superconducting qubits.Comment: Submitted to Natur
Theory of microwave spectroscopy of Andreev bound states with a Josephson junction
We present a microscopic theory for the current through a tunnel Josephson
junction coupled to a non-linear environment, which consists of an Andreev
two-level system coupled to a harmonic oscillator. It models a recent
experiment [Bretheau, Girit, Pothier, Esteve, and Urbina, Nature (London) 499,
312 (2013)] on photon spectroscopy of Andreev bound states in a superconducting
atomic-size contact. We find the eigenenergies and eigenstates of the
environment and derive the current through the junction due to inelastic Cooper
pair tunneling. The current-voltage characteristic reveals the transitions
between the Andreev bound states, the excitation of the harmonic mode that
hybridizes with the Andreev bound states, as well as multi-photon processes.
The calculated spectra are in fair agreement with the experimental data.Comment: 8 pages, 6 figure
Evidence for long-lived quasiparticles trapped in superconducting point contacts
We have observed that the supercurrent across phase-biased, highly
transmitting atomic size contacts is strongly reduced within a broad phase
interval around {\pi}. We attribute this effect to quasiparticle trapping in
one of the discrete sub-gap Andreev bound states formed at the contact.
Trapping occurs essentially when the Andreev energy is smaller than half the
superconducting gap {\Delta}, a situation in which the lifetime of trapped
quasiparticles is found to exceed 100 \mus. The origin of this sharp energy
threshold is presently not understood.Comment: Article (5 pages) AND Supplemental material (14 pages). To be
published in Physical Review Letter
Dynamics of quasiparticle trapping in Andreev levels
We present a theory describing the trapping and untrapping of quasiparticles
in the Andreev bound level of a single-channel weak link between two
superconductors. We calculate the rates of the transitions between even and odd
occupations of the Andreev level induced by absorption and emission of both
photons and phonons. We apply the theory to a recent experiment [Phys. Rev.
Lett. 106, 257003 (2011)] in which the dynamics of the trapping of
quasiparticles in the Andreev levels of superconducting atomic contacts coupled
to a Josephson junction was measured. We show that the plasma energy
of the Josephson junction defines a rather abrupt transition between a fast
relaxation regime dominated by coupling to photons and a slow relaxation regime
dominated by coupling to phonons. With realistic parameters the theory provides
a semi-quantitative description of the experimental results.Comment: 11 pages, 9 figures. Accepted for publication in Physical Review
Observing quantum state diffusion by heterodyne detection of fluorescence
A qubit can relax by fluorescence, which prompts the release of a photon into
its electromagnetic environment. By counting the emitted photons, discrete
quantum jumps of the qubit state can be observed. The succession of states
occupied by the qubit in a single experiment, its quantum trajectory, depends
in fact on the kind of detector. How are the quantum trajectories modified if
one measures continuously the amplitude of the fluorescence field instead?
Using a superconducting parametric amplifier, we have performed heterodyne
detection of the fluorescence of a superconducting qubit. For each realization
of the measurement record, we can reconstruct a different quantum trajectory
for the qubit. The observed evolution obeys quantum state diffusion, which is
characteristic of quantum measurements subject to zero point fluctuations.
Independent projective measurements of the qubit at various times provide a
quantitative validation of the reconstructed trajectories. By exploring the
statistics of quantum trajectories, we demonstrate that the qubit states span a
deterministic surface in the Bloch sphere at each time in the evolution.
Additionally, we show that when monitoring fluorescence, coherent
superpositions are generated during the decay from excited to ground state.
Counterintuitively, measuring light emitted during relaxation can give rise to
trajectories with increased excitation probability.Comment: Supplementary material can be found in the ancillary sectio
Using Spontaneous Emission of a Qubit as a Resource for Feedback Control
Persistent control of a transmon qubit is performed by a feedback protocol
based on continuous heterodyne measurement of its fluorescence. By driving the
qubit and cavity with microwave signals whose amplitudes depend linearly on the
instantaneous values of the quadratures of the measured fluorescence field, we
show that it is possible to stabilize permanently the qubit in any targeted
state. Using a Josephson mixer as a phase-preserving amplifier, it was possible
to reach a total measurement efficiency =35%, leading to a maximum of 59%
of excitation and 44% of coherence for the stabilized states. The experiment
demonstrates multiple-input multiple-output analog Markovian feedback in the
quantum regime.Comment: Supplementary material can be found as an ancillary objec
Coherent manipulation of Andreev states in superconducting atomic contacts
Coherent control of quantum states has been demonstrated in a variety of
superconducting devices. In all these devices, the variables that are
manipulated are collective electromagnetic degrees of freedom: charge,
superconducting phase, or flux. Here, we demonstrate the coherent manipulation
of a quantum system based on Andreev bound states, which are microscopic
quasiparticle states inherent to superconducting weak links. Using a circuit
quantum electrodynamics setup we perform single-shot readout of this "Andreev
qubit". We determine its excited state lifetime and coherence time to be in the
microsecond range. Quantum jumps and parity switchings are observed in
continuous measurements. In addition to possible quantum information
applications, such Andreev qubits are a testbed for the physics of single
elementary excitations in superconductors.Comment: Supplementary Materials at the end of the fil
Superconducting Quantum Point Contacts
We review our experiments on the electronic transport properties of atomic
contacts between metallic electrodes, in particular superconducting ones.
Despite ignorance of the exact atomic configuration, these ultimate quantum
point contacts can be manipulated and well characterized in-situ. They allow
performing fundamental tests of the scattering theory of quantum transport. In
particular, we discuss the case of the Josephson effect
Determining the Quantum Expectation Value by Measuring a Single Photon
Quantum mechanics, one of the keystones of modern physics, exhibits several
peculiar properties, differentiating it from classical mechanics. One of the
most intriguing is that variables might not have definite values. A complete
quantum description provides only probabilities for obtaining various
eigenvalues of a quantum variable. These and corresponding probabilities
specify the expectation value of a physical observable, which is known to be a
statistical property of an ensemble of quantum systems. In contrast to this
paradigm, we demonstrate a unique method allowing to measure the expectation
value of a physical variable on a single particle, namely, the polarisation of
a single protected photon. This is the first realisation of quantum protective
measurements.Comment: Nature Physics, in press (this version corresponds to the one
initially submitted to Nature Physics
- …