112 research outputs found

    An Integrative Cross-Omics Analysis of DNA Methylation Sites of Glucose and Insulin Homeostasis

    Get PDF
    Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D

    Keep them alive! Design and Evaluation of the “Community Fostering Reference Model”

    Get PDF
    Firms host online communities for commercial purposes, for example in order to integrate customers into ideation for new product development. The success of these firm-hosted online communities depends entirely on the cooperation of a high number of customers that constantly produce valuable knowledge for firms. However, in practice, the majority of successfully implemented communities suffers from stagnation and even a decrease of member activities over time. Literature provides numerous guidelines on how to build and launch these online communities. While these models describe the initial steps of acquiring and activating a community base from scratch very well and explicitly, they neglect continuous member activation and acquistion after a successful launch. Against this background, the authors propose the Community Fostering Reference Model (CoFoRM), which represents a set of general procedures and instruments to continuously foster member activity. In this paper, the authors present the theory-driven design as well as the evaluation of the CoFoRM in a practical use setting. The evaluation results reveal that the CoFoRM represents a valuable instrument in the daily working routine of community managers, since it efficiently helps activating community members especially in the late phases of a community’s LifeCycle

    Molecular genetic aetiology of general cognitive function is enriched in evolutionarily conserved regions

    Get PDF
    textabstractDifferences in general cognitive function have been shown to be partly heritable and to show genetic correlations with several psychiatric and physical disease states. However, to date, few single-nucleotide polymorphisms (SNPs) have demonstrated genome-wide significance, hampering efforts aimed at determining which genetic variants are most important for cognitive function and which regions drive the genetic associations between cognitive function and disease states. Here, we combine multiple large genome-wide association study (GWAS) data sets, from the CHARGE cognitive consortium (n =53 949) and UK Biobank (n=36 035), to partition the genome into 52 functional annotations and an additional 10 annotations describing tissuespecific histone marks. Using stratified linkage disequilibrium score regression we show that, in two measures of cognitive function, SNPs associated with cognitive function cluster in regions of the genome that are under evolutionary negative selective pressure. These conserved regions contained ∼2.6% of the SNPs from each GWAS but accounted for ∼ 40% of the SNP-based heritability. The results suggest that the search for causal variants associated with cognitive function, and those variants that exert a pleiotropic effect between cognitive function and health, will be facilitated by examining these enriched regions

    Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning

    Get PDF
    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes.Peer reviewe

    Sequence variation in telomerase reverse transcriptase (TERT) as a determinant of risk of cardiovascular disease: the Atherosclerosis Risk in Communities (ARIC) study

    Get PDF
    Abstract Background Telomerase reverse transcriptase (TERT) maintains telomere ends during DNA replication by catalyzing the addition of short telomere repeats. The expression of telomerase is normally repressed in somatic cells leading to a gradual shortening of telomeres and cellular senescence with aging. Interindividual variation in leukocyte telomere length has been previously associated with susceptibility to cardiovascular disease. The aim of the present study was to determine whether six variants in the TERT gene are associated with risk of incident coronary heart disease, incident ischemic stroke, and mortality in participants in the biracial population-based Atherosclerosis Risk in Communities (ARIC) study, including rs2736100 that was found to influence mean telomere length in a genome-wide analysis. Methods ARIC is a prospective study of the etiology and natural history of atherosclerosis in 15,792 individuals aged 45 to 64 years at baseline in 1987–1989. Haplotype tagging SNPs in TERT were genotyped using a custom array containing nearly 49,000 SNPs in 2,100 genes associated with cardiovascular and metabolic phenotypes. Cox proportional hazards models were used to assess the association between the TERT polymorphisms and incident cardiovascular disease and mortality over a 20-year follow-up period in 8,907 whites and 3,022 African-Americans with no history of disease at the baseline examination, while individuals with prevalent cardiovascular disease were not excluded from the analyses of mortality. Results After adjustment for age and gender, and assuming an additive genetic model, rs2736122 and rs2853668 were nominally associated with incident coronary heart disease (hazards rate ratio = 1.20, p = 0.02, 95 % confidence interval = 1.03– 1.40) and stroke (hazards rate ratio = 1.17, p = 0.05, 95 % confidence interval = 1.00 - 1.38), respectively, in African-Americans. None of the variants was significantly associated with cardiovascular disease in white study participants or with mortality in either racial group. Conclusions Replication in additional population-based samples combined with genotyping of polymorphisms in other genes involved in maintenance of telomere length may help to determine whether genetic variants associated with telomere homeostasis influence the risk of cardiovascular disease in middle-aged adults

    Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus

    Get PDF
    Elevated serum urate levels, a complex trait and major risk factor for incident gout, are correlated with cardiometabolic traits via incompletely understood mechanisms. DNA methylation in whole blood captures genetic and environmental influences and is assessed in transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate (discovery, n = 12,474, replication, n = 5522). The 100 replicated, epigenome-wide significant (p < 1.1E–7) CpGs explain 11.6% of the serum urate variance. At SLC2A9, the serum urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal effects on serum urate levels and/or gout, and two of these partly mediate the effects of urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-associated CpGs are associated with conditions defining metabolic syndrome, suggesting that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk factors. This study demonstrates that EWAS can provide new insights into GWAS loci and the correlation of serum urate with other complex traits

    Plasma amyloid β levels are driven by genetic variants near APOE, BACE1, APP, PSEN2: A genome-wide association study in over 12,000 non-demented participants

    Get PDF
    INTRODUCTION: There is increasing interest in plasma amyloid beta (Aβ) as an endophenotype of Alzheimer's disease (AD). Identifying the genetic determinants of plasma Aβ levels may elucidate important biological processes that determine plasma Aβ measures. METHODS: We included 12,369 non-demented participants from eight population-based studies. Imputed genetic data and measured plasma Aβ1-40, Aβ1-42 levels and Aβ1-42/Aβ1-40 ratio were used to perform genome-wide association studies, and gene-based and pathway analyses. Significant variants and genes were followed up for their association with brain positron emission tomography Aβ deposition and AD risk. RESULTS: Single-variant analysis identified associations with apolipoprotein E (APOE) for Aβ1-42 and Aβ1-42/Aβ1-40 ratio, and BACE1 for Aβ1-40. Gene-based analysis of Aβ1-40 additionally identified associations for APP, PSEN2, CCK, and ZNF397. There was suggestive evidence for interaction between a BACE1 variant and APOE ε4 on brain Aβ deposition. DISCUSSION: Identification of variants near/in known major Aβ-processing genes strengthens the relevance of plasma-Aβ levels as an endophenotype of AD

    DNA Methylation Signatures of Depressive Symptoms in Middle-aged and Elderly Persons:Meta-analysis of Multiethnic Epigenome-wide Studies

    Get PDF
    IMPORTANCE Depressive disorders arise from a combination of genetic and environmental risk factors. Epigenetic disruption provides a plausible mechanism through which gene-environment interactions lead to depression. Large-scale, epigenome-wide studies on depression are missing, hampering the identification of potentially modifiable biomarkers.OBJECTIVE To identify epigenetic mechanisms underlying depression in middle-aged and elderly persons, using DNA methylation in blood.DESIGN, SETTING, AND PARTICIPANTS To date, the first cross-ethnic meta-analysis of epigenome-wide association studies (EWAS) within the framework of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium was conducted. The discovery EWAS included 7948 individuals of European origin from 9 population-based cohorts. Participants who were assessed for both depressive symptoms and whole-blood DNA methylation were included in the study. Results of EWAS were pooled using sample-size weighted meta-analysis. Replication of the top epigenetic sites was performed in 3308 individuals of African American and European origin from 2 population-based cohorts.MAIN OUTCOMES AND MEASURES Whole-blood DNA methylation levels were assayed with Illumina-Infinium Human Methylation 450K BeadChip and depressive symptoms were assessed by questionnaire.RESULTS The discovery cohorts consisted of 7948 individuals (4104 [51.6%] women) with a mean (SD) age of 65.4 (5.8) years. The replication cohort consisted of 3308 individuals (2456 [74.2%) women) with a mean (SD) age of 60.3 (6.4) years. The EWAS identified methylation of 3 CpG sites to be significantly associated with increased depressive symptoms: cg04987734 (P = 1.57 x 10(-)(08); n = 11 256; CDC42BPB gene), cg12325605 (P = 5.24 x 10(-09); n = 11256; ARHGEF3 gene), and an intergenic CpG site cg14023999 (P = 5.99 x 10(-)(08); n = 11256; chromosome = 15q261). The predicted expression of the CDC42BPB gene in the brain (basal ganglia) (effect, 0.14; P = 2.7 x 10(-03)) and of ARHGEF3 in fibroblasts (effect. -0.48; P = 9.8 x 10(-)(04) ) was associated with major depression.CONCLUSIONS AND RELEVANCE This study identifies 3 methylated sites associated with depressive symptoms. All 3 findings point toward axon guidance as the common disrupted pathway in depression. The findings provide new insights into the molecular mechanisms underlying the complex pathophysiology of depression. Further research is warranted to determine the utility of these findings as biomarkers of depression and evaluate any potential role in the pathophysiology of depression and their downstream clinical effects. (C) 2018 American Medical Association. All lights reserved
    corecore