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Abstract 

Personality and cognition are heritable mental traits, and their genetic determinants may be distributed 

across interconnected brain functions. However, previous studies have employed univariate 

approaches which reduce complex traits to summary measures. We applied the “pleiotropy-informed” 

multivariate omnibus statistical test (MOSTest) to genome-wide association studies (GWAS) of 35 

item and task-level measures of neuroticism and cognition from the UK Biobank (n=336,993). We 

identified 431 significant genetic loci and found evidence of abundant pleiotropy across personality 

and cognitive domains. Functional characterisation implicated genes with significant tissue-specific 

expression in all tested brain tissues and enriched in brain-specific gene-sets. We conditioned 

independent GWAS of the Big 5 personality traits and cognition on our multivariate findings, which 

boosted genetic discovery in other personality traits and improved polygenic prediction. These 

findings advance our understanding of the polygenic architecture of complex mental traits, indicating 

a prominence of pleiotropic genetic effects across higher-order domains of mental function. 

Keywords 

Cognition; personality; Big 5 personality; neuroticism; GWAS; multivariate GWAS; MOSTest; 

pleiotropy;  
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Introduction 

The brain is responsible for a diverse set of interconnected and overlapping functions. Among these, 

personality and cognition both represent heritable, higher-order domains of mental functioning that (i) 

remain relatively stable between late adolescence and old age (Damian et al., 2019; Walhovd et al., 

2016), (ii) form central components of an individual’s identity, and (iii) are related to multiple 

physical and mental health outcomes (Strickhouser et al., 2017; Wraw et al., 2015). They are also 

interrelated, with evidence of complex patterns of association between personality structure, cognitive 

functioning (Wettstein et al., 2017) and academic performance (Mammadov, 2021). A comprehensive 

investigation of their genetic foundations can provide insights into the neurobiological mechanisms 

influencing these fundamental human traits.  

Accelerated by the population-based cohort the UK Biobank (UKB; n=~500,000), genome-wide 

association studies (GWAS) have revealed evidence of genetic overlap between personality and 

cognitive traits. Thirty-eight genetic loci were shared between 136 loci associated with neuroticism 

(Nagel et al., 2018a), one of the “Big 5” personality traits defined as the propensity to experience 

negative emotions (Widiger and Oltmanns, 2017), and 205 loci associated with general intelligence 

(Savage et al., 2018), defined as the “common factor” underlying diverse cognitive functions. 

Neuroticism and general intelligence also exhibit weak but significant negative genetic correlation 

(rg=-0.16) (Widiger and Oltmanns, 2017) and higher polygenic scores (PGS) for neuroticism predict 

lower intelligence (Hill et al., 2020).  

Both GWAS described employ univariate analytical approaches, which reduce complex mental traits 

to a single measure (Nagel et al., 2018a; Savage et al., 2018). The limitations of this approach are 

underscored by an item-level analysis of neuroticism which found that, despite negative genetic 

correlation at the sum-score level, two neuroticism sub-factors were positively genetically correlated 

with general intelligence (Hill et al., 2020). A second item-level analysis of the neuroticism scale also 

showed divergent patterns of genetic correlation between individual neuroticism items and diverse 

mental traits (Nagel et al., 2018b).  
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In contrast, multivariate approaches simultaneously model the matrix of correlations between 

phenotypes, thus more accurately representing the interconnected nature of the brain and its functions. 

Multivariate analysis can also increase statistical power in mental traits, as demonstrated by a study of 

neuroticism items in UKB which used canonical correlation analysis (CCA) to discover twice the 

number of genetic loci compared to univariate GWAS (Nagel et al., 2018b). A boost in genetic 

discovery has also been demonstrated by the “pleiotropy-informed” multivariate omnibus statistical 

test (MOSTest). Applying MOSTest to brain imaging phenotypes has shown that alterations in brain 

morphology and functional connectivity are associated with hundreds of genetic loci with 

“pleiotropic” genetic effects across the brain, even despite weak genetic correlation (van der Meer et 

al., 2020a, 2021; Roelfs et al., 2022; Shadrin et al., 2021). We hypothesised that the genetic 

architecture of interconnected higher-order mental traits, such as cognition and personality are driven 

by similar pleiotropic effects.    

Our understanding of the genetics of personality traits beyond neuroticism is limited, in part because 

UKB did not collect data on the four remaining personality traits within the “Big 5” taxonomy. As 

such, only eight loci have been reported across all five measures in the largest GWAS to date 

(n=76,600-122,886) (Lo et al., 2017). However, it is possible to boost statistical power for genetic 

discovery, identify shared genetic loci and improve prediction in underpowered GWAS by leveraging 

genetic overlap with a second, more powerful GWAS using the conditional false discovery rate 

framework (cFDR) (Andreassen et al., 2013; van der Meer et al., 2020b; Smeland et al., 2019a). This 

approach has recently been applied to MOSTest analyses of brain structural (van der Meer et al., 

2020b) and functional measures (Roelfs et al., 2022) to improve discovery and prediction of mental 

disorders.  

Given evidence of genetic overlap between neuroticism and cognition, we sought to boost the 

statistical power for genetic discovery by exploiting pleiotropic genetic effects across item and task-

level measures of neuroticism and cognition. By applying “pleiotropy-informed” MOSTest, which 

incorporates scenarios of mixed effect directions, we found a substantial boost in discovery driven by 

shared genetic effects across domains. The widespread effects were supported by functional analysis, 

which identified underlying neurobiological processes distributed across brain regions. We 

additionally leveraged our multivariate analysis to boost genetic discovery across the remaining Big 

Five personality traits and improve polygenic prediction. 
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Results 

Sample description  

The UKB is a population-based cohort comprising over 500,000 participants between the ages of 39-

72 (Bycroft et al., 2018). At enrolment, all participants were invited to complete a touchscreen 

questionnaire, including 12 dichotomous items derived from the neuroticism subscale of the Eysenck 

Personality Questionnaire-Revised Short Form (Eysenck et al., 1985). They additionally completed 25 

diverse cognitive tasks, either at enrolment or during follow-up visits. These included measures of 

fluid intelligence, reaction time, executive function, and memory (Cullen et al., 2017) (table 1, 

supplementary table 1). After also calculating sum-scores for neuroticism and fluid intelligence, we 

included all 39 measures to maximise statistical power for genetic discovery. After removing 

participants of non-White European ancestry and related individuals, the mean sample size across all 

35 measures was 214,974, ranging from 11,679 to 336,993 (table 1, supplementary figure 1). Sample 

sizes were more variable among cognitive tasks than neuroticism items. Mean age was 56.9 years 

(s.d.=8.0) at enrolment and 53.7% of included participants were female. 

Item-level heritability and genetic correlations 

To provide an overview of the heritability of item and task-level measures, we first calculated 

linkage-disequilibrium score regression (LDSR) SNP-heritabilities (h2
SNP) for all included measures 

(supplementary figure 1, supplementary table 2). Mean h2
SNP for all 39 items was 0.083 (s.d.=0.052). 

The neuroticism sum-score (h2
SNP=0.12, s.e.=0.0053, p=2.62e-106) and fluid intelligence sum-score 

(h2
SNP=0.21, s.e.=0.008, p=2.54e-154) were the most heritable measures within each domain, 

respectively. Four conditions within the fluid intelligence scale were not significantly heritable. 

Among these, “numeric addition test” and “identify largest number” displayed highly skewed 

responses, most likely due to the simplicity of the tasks. In contrast the conditions “antonym” and 

“subset inclusion logic” were underpowered (n=3,627-11,679) as they were performed at the end of a 

timed session. Since the inclusion of non-heritable phenotypes may reduce statistical power (van der 

Meer et al., 2020a), these four measures were removed from the rest of the analysis, leaving a total of 

35 measures. 
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Table 1: Overview of neuroticism and cognitive measures from UK Biobank. Clusters are derived from genetic 

correlation-based hierarchical clustering (figure 1). Further details are provided in supplementary table 1.  

Cluster Measure Abbreviation Sample size 

N
eu

ro
ti

ci
sm

 

Depressed affect 

Neuroticism sum-score NEUR sum-score 274,056 

Are you an irritable person? Irritable 322,599 

Do you often feel lonely? Lonely 332,193 

Do you often feel fed-up? Fed-up 330,478 

Do you ever feel just miserable for no reason? Miserable 331,782 

Does your mood often go up and down? Mood swings 329,358 

Worry 

Do you suffer from nerves? Nerves 325,181 

Are you often troubled by feelings of guilt? Guilt 328,700 

Would you call yourself tense or highly strung? Tense 327,162 

Are your feelings easily hurt? Feelings hurt 327,762 

Would you call yourself a nervous person? Nervous 328,653 

Do you worry too long after an embarrassing experience? Embarrass 323,698 

Are you a worrier? Worrier 328,647 

C
og

ni
ti

on
 

Fluid intelligence 
/memory 

Fluid intelligence sum-score: FI sum-score 163,375 

Word interpolation Word interp. 162,937 

Positional arithmetic Pos. math 161,768 

Family relationship calculation Fam. rel. calc. 158,977 

Conditional arithmetic Cond. Math 144,648 

Synonym Synonym 120,891 

Chained arithmetic Chained math 109,731 

Concept interpolation Concept interp. 50,331 

Arithmetic sequence recognition Seq. recog. 2 34,286 

Square sequence recognition Seq. recog. 1 11,679 

Numeric memory Num. memory 104,319 

Prospective memory Prosp. memory 111,079 

Matrix pattern completion. Matrix pattern 22,335 

Executive function 

Pair matching: 
Full game. Pair match. 1 336,993 

Time of full game. Pair match. 2 330,143 

Basic game. Pair match. 3 336,993 

Time of basic game. Pair match. 4 330,777 

Symbol digit substitution Symb. dig. Subs. 94,153 

Tower rearranging Tower rearrang. 22,159 

Trail making: 
Part A Trail making 1 85,595 

Part B Trail making 2 85,597 

Reaction time Reaction time. Reaction time 335,066 

Non- heritable 

Fluid intelligence: 

Numeric addition test N/a 162,846 

Identify largest number N/a 162,989 

Antonym N/a 17,417 

Subset inclusion logic N/a 3,627 
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We next computed genetic correlations using LDSR for all pairs of measures followed by hierarchical 

clustering to explore directional genetic relationships across included measures (figure 1, 

supplementary results) (Bulik-Sullivan et al., 2015a). Neuroticism and cognitive measures shared 

weak negative genetic correlations (mean rg=-0.15, s.d.=0.12) compared to moderate to strong 

positive correlations within each domain (neuroticism measures mean rg=0.64, s.d.=0.14; cognitive 

measures mean rg=0.56, s.d.=0.23). Consequently, neuroticism and cognitive measures clustered 

separately. Neuroticism items further clustered into two sub-groups, mapping onto anxiety related 

features (“worry”) and depressive features (“depressed affect”), replicating previous findings (Nagel 

et al., 2018b). Cognitive measures were more heterogenous, with “reaction time” distinct from two 

larger clusters relating to fluid intelligence, prospective memory, and numeric memory (“fluid 

intelligence/memory”) and executive function and visuospatial memory (“executive function”). A 

similar pattern was observed among phenotypic correlations (figure 1, supplementary results). 

Multivariate GWAS identifies 431 genetic loci with pleiotropic genetic effects 

On application of MOSTest to discover pleiotropic genetic effects, we identified 431 independent 

genetic loci significantly associated with the multivariate distribution of the 35 measures of 

neuroticism and cognition. This represented a 3.8x boost in locus discovery compared to mass 

univariate GWAS with correction for multiple testing (“min-P”), which identified 113 loci (figure 2a, 

supplementary figure 2, supplementary tables 3-4). Since MOSTest specifically leverages pleiotropy, 

this boost in discovery supports the hypothesis of pleiotropic genetic effects across mental traits. We 

also performed MOSTest analyses on neuroticism and cognitive measures separately to test how 

much of the boost in locus discovery was driven by cross-domain pleiotropy. Cognitive measures 

were associated with 221 genetic loci and neuroticism measures were associated with 199 loci. 

However, 153 loci discovered by the combined MOSTest analyses were not identified by either of the 

separate analyses, indicating that 35% of the discovered loci were driven by cross-domain pleiotropy.  



Figure 1: Heatmap of genetic and phenotypic correlations across mental traits. LDSR genetic correlations (rg, top right) 

and Spearman rank phenotypic correlations (rp, bottom left) reveal a pattern of moderate to strong positive genetic 

correlations within neuroticism and cognitive domains but weak negative genetic correlations across cognition and 

neuroticism measures. Phenotypically, there were also stronger positive correlations within domains but minimal correlation 

across domains. Measures were clustered on genetic correlation, revealing 2 neuroticism clusters aligning with previously 

reported clusters “depressed affect” and “worry” (Nagel et al., 2018b), and 3 cognition clusters, broadly mapping on to 

“reaction time”, “executive function” and “fluid intelligence/memory”.  

To further illustrate the distribution of genetic effects, we tested for cross-cluster genetic overlap 

among the 431 lead variants irrespective of effect direction using univariate GWAS p-values from 

each included measure (figure 2b, supplementary table 5). This showed that there was an increase in 

the number of shared variants at decreasing significance thresholds (p<5x10-8, p<1x10-6, p<1x10-5), 

indicating that the pleiotropic genetic variants captured by MOSTest had predominantly weak, sub-
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threshold associations. When comparing across clusters, the two neuroticism clusters “depressed 

affect” and “worry” shared the largest number of lead variants at all thresholds (n=22-68). 

Nonetheless, there was a comparable number of shared variants between cognitive and neuroticism 

clusters (n=0-29) and within cognitive clusters (n=1-24). Although these findings are partly affected 

by differences in sample size across measures, this provides further evidence of pleiotropic genetic 

effects across mental traits. We also provide evidence of gene-level overlap across clusters 

(supplementary results, supplementary figure 3). 

We compared effect directions of shared lead variants across each pair of clusters at different 

significance thresholds and calculated the proportion of variants with concordant effect directions on 

each pair of traits (figure 2b, supplementary table 5). This showed that lead variants shared between 

neuroticism clusters, and between “fluid intelligence/memory” and “executive function”, and 

“reaction time” and “executive function” possessed highly concordant effects at all significance 

thresholds (0.98-1.00 concordance), consistent with the strong positive genetic correlations observed 

in figure 1. In contrast, there was a predominance of variants with discordant effects between 

“reaction time” and “fluid intelligence/memory” (0.38-0.50 concordance). When comparing across 

neuroticism and cognitive domains, most shared variants had discordant effects, although there were 

more prominent mixed effect directions, with concordance ranging from 0-0.33 across all significance 

thresholds. This is somewhat consistent with the weak genetic correlations between cognitive and 

neuroticism measures observed in figure 1, although the predominance of discordant lead variants 

between “executive function” and “worry” (2/23, 0.08 concordance) and “fluid intelligence/memory” 

and “depressed affect” clusters (5/29, 0.17 concordance) suggests that, to some extent, discovered 

variants exhibit more strongly discordant genetic effects than the genome-wide average represented 

by genetic correlations. 

To investigate this further, we performed hierarchical clustering of univariate z-scores from all 431 

lead variants (supplementary figures 4-5). This revealed that the majority of lead variants had 

discordant effect directions between neuroticism and cognitive measures. However, a minority of 

variants had either concordant effects across all measures, or had mixed effects within cognitive and 

neuroticism clusters. This indicates the presence of mixed genetic effect directions but a 

predominance of discordant effects across domains.  



Figure 2: Boosting the signal of genetic association for 35 mental traits by leveraging pleiotropy. A. Miami plot for 

MOSTest (orange) and min-P (blue), plotting each SNP’s -log10(p-values) against chromosomal position. By applying a 

multivariate framework which leverages pleiotropic effects, there is a substantial boost in signal compared to a “mass 

univariate” approach such as min-P, evidenced by smaller p-values and a larger number of discovered loci (n=431 vs. 113). 

This indicates the presence of pleiotropic genetic effects across mental traits. B. Shared genetic associations of lead variants 

across 5 genetic correlation-based clusters (figure 1) at three significance thresholds. The number of lead variants within 

each cluster individually at each significance threshold is represented by the size of the coloured segments. The number of 

lead variants shared between each pair of clusters is represented by the width of the coloured ribbons. The proportion of 

variants with concordant effect directions on each cluster is represented by the colour of the ribbons from blue (0) to red (1).  

We plotted univariate GWAS p-values from all 35 measures for the top 40 lead variants to illustrate 

item and task-level patterns of genetic association (supplementary figure 6). Plots for five of these 

variants are presented in figure 3, each exemplifying a distinct pattern of association. While some 

variants were genome-wide significant in neuroticism clusters (n=76) (figure 3c) or cognitive clusters 

only (n=85) (figure 3d-e), 10 variants were genome-wide significant in measures across both 

neuroticism and cognitive clusters (figure 3a). Nonetheless, most variants had sub-threshold effects 

(n=260), demonstrating the boost in power provided by multivariate analysis (figure 3b). We also 

present the effect directions at the individual variant level, showing that 4 of the 5 lead variants 

exhibit a discordant relationship between neuroticism and cognition, consistent with negative genetic 

correlations. However, figure 3b exemplified mixed effect directions, with weak positive effects on 

both “depressed affect” items and cognitive clusters but negative effects on “worry”. 



Figure 3. Patterns of pleiotropic genetic associations at the SNP-level. P-values from univariate GWAS of 35 mental 

traits plotted for 5 lead variants, selected to illustrate five distinct patterns of association. The locus number, which 

corresponds to MOSTest significance rank, is provided in brackets. Univariate p-values are plotted on the logarithmic scale 

as the distance from the centre of each circular plot. Genome-wide significance (p<5x10-8) is represented by the dashed line. 

Positive effect direction is illustrated by a filled circle and negative effect direction by a clear circle. Phenotype clusters are 

derived from genetic correlation-based hierarchical clustering (figure 2) A: SNP which is genome-wide significant across 

neuroticism measures (with apparent specificity for the “depressed affect” cluster) and cognitive measures (both in 

“executive function” and fluid intelligence/memory” clusters), with predominantly positive effects on cognitive tasks and 

negative effects in neuroticism items. B: SNP which is non-significant across all measures, with indication of weak 

association with “depressed affect” cluster, “executive function” and “fluid intelligence/memory” clusters, and 

predominantly concordant effects in “cognitive tasks and depressed affect” items. C: SNP with genome-wide significance 

across neuroticism measures but minimal association with cognitive measures, and negative effects on neuroticism items and 

predominantly positive effects on “executive function”. D: SNP with genome-wide significance with “fluid 

intelligence/memory”, sub-threshold association with “executive function” and minimal association with neuroticism 

measures, and predominantly negative effects on cognitive tasks and positive effects on neuroticism items. E: SNP with 

genome-wide significance with “reaction time” and “executive function” but minimal association with “fluid 

intelligence/memory” and neuroticism measures, and negative effects in “fluid intelligence/memory” but weak, mixed 

effects in all other measures.   

Replication in independent samples 

We tested for nominal significance and consistency of effect direction for MOSTest-discovered lead 

variants in independent samples, including 23andMe neuroticism GWAS (n=59,225) (Lo et al., 2017) 

and CHARGE “general cognitive function” GWAS (n=53,949) (Davies et al., 2015) (supplementary 

table 6). Out of 140 lead variants which were present in all three samples and had non-ambiguous 
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alleles, 28 were nominally significant in the 23andMe, Inc. neuroticism GWAS, 29 in the CHARGE 

general cognitive function GWAS, and seven in both datasets. In line with previous studies, we also 

tested for consistent genetic effects of lead variants across discovery and replication datasets (Lee et 

al., 2018; Ripke et al., 2020). Since they were the most comparable phenotypes within our analyses, 

we compared univariate GWAS effect directions for the neuroticism and fluid intelligence sum-scores 

with 23andMe neuroticism and CHARGE general cognitive function summary statistics, respectively. 

102 had concordant effects in neuroticism (exact binomial p=1.61x10-8) and 103 had concordant 

effects in cognition (p=5.67x10-9). Seventy-six variants were concordant in both neuroticism and 

cognition (p=8.57e-8), providing additional evidence of pleiotropic effects in independent samples.  

Functional characterisation 

Using FUMA (fuma.ctglab.nl) (Watanabe et al., 2017), we performed functional annotation to provide 

biological insights into the genetic associations captured by MOSTest. We first used multi-marker 

analysis of genomic annotation (MAGMA) which tests for the association between phenotypic 

variation and aggregated GWAS p-values for 18,952 human protein-coding genes irrespective of 

effect direction (de Leeuw et al., 2015). MAGMA identified 1062 multiple comparison-corrected 

significant genes associated with the 35 measures of neuroticism and cognition (supplementary table 

7). Next, MAGMA-based tissue specific expression analysis demonstrated highly specific enrichment 

of mapped genes in brain tissues. At the general tissue level (n=30), the brain, pituitary, ovary and 

testis were significantly enriched (supplementary figure 7). At the detail tissue level (n=53), all of the 

14 included brain tissues were significantly enriched, as well as testicular tissue (figure 4, 

supplementary figure 8). When applied to Gene Ontology and canonical pathways there was a clear 

predominance of brain-related gene-sets. Twenty-nine out of 43 gene-sets were directly implicated in 

the structure or function of the central nervous system, and eight out of the top 10 significantly 

enriched gene-sets were related to synaptic structure or function (figure 4). Outside of the top 10, 

other notable gene-sets included “observational learning”, “behavior” and “cognition”, in addition to 

several neurodevelopmental gene-sets and “gamma aminobutyric acid signalling pathway” 

(supplementary table 8).   



Figure 4. MAGMA tissue specific gene expression and gene-set enrichments. A. MAGMA-based tissue specificity 

analysis of multivariate GWAS of 35 mental traits shows highly specific enrichment across all brain tissues and the testis. 

All tissues with corrected p<0.1 are presented. All tissues tested are shown in supplementary figures 7. Please note that the 

ovary was significant when tested at the “general tissues” level (supplementary figure 8). B. Top 20 gene-sets significantly 

enriched for gene-level associations with multivariate GWAS of 35 mental traits. All significant gene sets are presented in 

supplementary table 8. All p-values are corrected for multiple comparisons using Bonferroni correction.  
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Boosting discovery of genetic loci associated with Big 5 personality traits and 

cognitive function 

We used the conditional false discovery rate method (cFDR) (Smeland et al., 2019a) to leverage the 

additional power generated by our multivariate analysis to boost discovery of novel genetic loci 

associated with the remaining big 5 personality traits: agreeableness, conscientiousness, extraversion 

and openness in an independent sample (n=59,225) (Lo et al., 2017). cFDR applies a Bayesian model-

free statistical framework to re-rank SNP associations with a primary trait given their strength of 

association with a conditional trait.  

We identified novel loci associated agreeableness (n=11), conscientiousness (n=36), extraversion 

(n=89), and openness (n=24) (figure 5a, supplementary tables 9-12). This included, to our 

knowledge, the first genetic loci associated with agreeableness. The conditional analysis ensures that 

the boost in power from MOSTest method is driven by overlapping genetic variants, and not non-

specific effects. Functional annotation of cFDR results identified 47 positionally-mapped genes for 

agreeableness, 157 for conscientiousness, 531 for extraversion, and 114 for openness (supplementary 

tables 13-16). Since MAGMA cannot be applied to cFDR statistics, we applied a hypergeometric test-

based gene-set and tissue enrichment analyses using positionally mapped genes to replicate the 

approach taken by MAGMA (Watanabe et al., 2017). There were no gene-sets or tissues significantly 

enriched with mapped genes from any of the 4 traits.   

To test for pleiotropic effects in the remaining personality traits, we also performed conjunctional 

FDR (conjFDR), an extension of cFDR which identifies shared loci between two phenotypes. This 

revealed that 46-74% of loci associated with the Big 5 personality traits were also associated with our 

multivariate analysis of mental traits, indicating extensive pleiotropic effects beyond just neuroticism 

(supplementary tables 17-20).  

We performed cFDR using independent neuroticism and general cognitive function GWAS, and 

compared these findings to the larger UKB-based GWAS to test the validity of cFDR in this context 

(supplementary tables 21-22). Of those present in both datasets, 50 out of 72 (69.4%) neuroticism and 

92 out of 131 (70.2%) general cognitive function lead variants were nominally significant in the larger 

GWAS of neuroticism (Nagel et al., 2018a) and general intelligence (Savage et al., 2018), 

respectively. 
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Improving polygenic prediction of personality and cognitive function 

We investigated whether our multivariate GWAS could also improve polygenic prediction of Big 5 

personality traits and cognitive function using a pleiotropy-informed PGS (pleioPGS) (van der Meer 

et al., 2020b). We constructed PGS using the 23andMe and CHARGE datasets for personality traits 

and general cognitive function, respectively, and tested their performance in Big 5 personality and IQ 

scores from healthy controls from the independent Thematically Organised Psychosis (TOP) study 

(n=578-1066). We compared the top 10-100,000 SNPs using original GWAS p-value ranking and 

cFDR-based ranking, hypothesising that the boost in power from our multivariate analysis will select 

more informative variants than standard GWAS, resulting in improved PGS performance. cFDR-

based ranking outperformed original PGSs by 2.6 and 2.5 times for conscientiousness and IQ, 

respectively (figure 5b). PGSs performed poorly in the remaining four phenotypes for both p-value-

based and cFDR-based ranking, indicating a lack of signal (max. r2 <0.01) (supplementary figure 7).  

Discussion 

In this multivariate genome-wide association analysis of 35 heritable mental traits, we provide 

evidence of abundant pleiotropic genetic associations across personality and cognitive traits. Despite 

weak genetic and phenotypic correlations between neuroticism and cognitive domains, we discovered 

431 genetic loci associated with the multivariate distribution of included traits, with evidence of 

pleiotropic associations across domains. Furthermore, we identified distinct patterns of relationships 

with evidence of cross-domain genetic association and mixed effect directions. Nonetheless, most 

lead SNPs were not genome-wide significant in univariate GWAS, demonstrating the boost in power 

provided by our multivariate approach. Functional characterisation revealed that the genetic signal 

captured by MOSTest was associated with increased gene expression across all brain tissues, the testis 

and ovary, and implicated synaptic structure and neurodevelopmental processes. We subsequently 

leveraged the extra power generated by our multivariate approach to boost discovery of genetic loci 

associated with the remaining Big 5 personality traits, identifying 160 loci for agreeableness (n=11), 

conscientiousness (n=36), extraversion (n=89), and openness (n=24).  We further showed how the 

genetic loci shared across cognition and multiple personality traits improved polygenic prediction of 

conscientiousness and IQ in an independent sample. These findings have implications for how we 
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conceptualise the neurobiology of personality and cognition, indicating that their genetic foundations 

are tightly interrelated. Dimensional, multivariate approaches which account for the complex set of 

interactions across domains are therefore better suited to fully elucidate the molecular mechanisms 

contributing to these fundamentally human traits. 

Figure 5: Leveraging multivariate analysis to boost discovery and polygenic prediction of personality and cognitive 

function. A. The number of loci associated with agreeableness (AGREE), conscientiousness (CONSC), extraversion 

(EXTRA), and openness (OPEN) in the primary GWAS (pale orange) compared to the conditional false discovery rate 

conditioning on the multivariate analysis of 35 mental measures (cFDR, dark orange). We also provide the number of shared 

genetic loci between personality and the multivariate analysis of 35 mental measures (conjFDR, orange). The number of loci 

discovered increased substantially, including the first loci reported for AGREE. B. Explained variance of CONSC and IQ 

polygenic scores (PGS) (r2, y-axis) for top 10, 100, 1000, 10,000 and 100,000 independent variants using primary GWAS p-

value based ranking (light orange) and pleiotropy informed (cFDR-based) ranking (dark orange) from 23andMe and 

CHARGE GWAS summary statistics respectively. PGSs were tested in healthy participants from the Thematically 

Organised Psychosis study. 
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Firstly, the boost in power generated by our combined analysis of neuroticism and cognitive 

measures, alongside our findings of shared genetic associations across domains, is consistent with the 

hypothesis that these two mental constructs are influenced by pleiotropic genetic variants. This builds 

on recent evidence that differences in brain structure and function are associated with a similar pattern 

of pleiotropic genetic effects (van der Meer et al., 2020a; Roelfs et al., 2022; Shadrin et al., 2021). As 

larger numbers of genetic loci associated with complex mental traits are discovered (Gandal and 

Geschwind, 2021), it is becoming increasingly apparent that individual genetic variants impact 

multiple, diverse traits, with few phenotype-specific variants. This represents a key conceptual 

advance which has several implications. Firstly, while large univariate GWAS have provided insights 

into the neurobiology of specific traits (Nagel et al., 2018a; Savage et al., 2018), future studies need to 

be aware of the lack of specificity of most variants associated with complex mental phenotypes. To 

fully characterise a given genetic variant, its effect should be evaluated beyond the specific phenotype 

of interest as it is likely to have pleiotropic effects across diverse domains (Karlsson Linnér et al., 

2021; van der Meer et al., 2020a). Secondly, as statistical power increases, the relative effect size of a 

variant will likely be more informative with regards to specificity and relevance for a given phenotype 

than the presence or absence of a statistical association. In this respect, conventional GWAS may 

become less a tool for discovery and more focused on the precision of effect size estimates. Thirdly, 

as we have shown here, pleiotropic genetic effects can be leveraged to help boost the power for 

genetic discovery and polygenic prediction in related traits.  

When comparing effect sizes of MOSTest discovered lead variants across included measures, there 

was also evidence of mixed effect directions between neuroticism and cognitive domains. This is 

consistent with the finding of minimal genetic correlation yet pleiotropic effects between these two 

domains. Genetic correlation is a genome-wide summary measure of the correlation of effect sizes 

between two phenotypes (Bulik-Sullivan et al., 2015a). It is therefore possible for two phenotypes to 

share large numbers of genetic variants but possess minimal correlation if there is a balance of shared 

variants with the same and opposite effect directions on the two phenotypes (Bahrami et al., 2021; 

Smeland et al., 2019b, 2020). Shared genetic variants with mixed effects reflect phenotypic findings 

that neuroticism does not significantly predict high school educational performance (Mammadov, 

2021) or cognitive function in older adults (Wettstein et al., 2017). Nonetheless, “executive function” 
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and “reaction time” clusters shared variants with the “worry” cluster and “fluid intelligence/memory” 

shared variants with the “depressed affect” cluster which were strongly discordant, despite weak 

negative genetic correlations. This suggests that MOSTest may prioritise variants which have more 

strongly aligned effect alleles in relation to the genome-wide average. Further, the recent findings of 

pleiotropic genetic effects on brain structure and function (van der Meer et al., 2021; Roelfs et al., 

2022; Shadrin et al., 2021), as well as patterns of widespread gene expression across different brain 

regions (Hawrylycz et al., 2015) underscore the highly inter-related functions of brain regions and 

structures. Taken with our findings, this indicates that a complex interplay between heritable brain 

functions result in patterns of heritable, inter-related, higher-order mental traits which contribute to 

the core characteristics of an individual. 

We used MAGMA to provide biological insights into the statistical associations captured by 

MOSTest. Firstly, tissue enrichment analysis showed significant enrichment in all included brain 

tissues (GTEx Consortium et al., 2017), underscoring the distributed nature of the genetic variants 

discovered. There were also several relevant gene-sets identified, including “observational learning”, 

“behavior” and “cognition”, alongside several gene-sets related to synaptic structure and function. 

Since MAGMA tests for enrichment of positionally mapped genes and so is not biased by the 

selection of tissue-specific eQTL databases, this indicates that MOSTest is capturing biologically 

plausible genes and is not driven by non-specific genetic overlap, helping to validate our findings. 

Furthermore, the diverse set of brain tissues identified, including cortical structures, sub-cortical 

structures, the midbrain and the hindbrain, support the broader concept of pleiotropic effects across 

the brain both on a structural and functional level (van der Meer et al., 2020c; Roelfs et al., 2022; 

Shadrin et al., 2021). It is also interesting to note that both the testis and ovary were significantly 

enriched, although to a lesser degree than brain tissues. Sex hormones can act in the brain to regulate 

gene transcription and interact directly with neurotransmitter systems (Hornung et al., 2020). They are 

also known to impact cognition, particularly verbal and visuospatial abilities (Sacher et al., 2013), and 

emotional regulation (Sundström-Poromaa, 2018), a core feature of neuroticism (Widiger and 

Oltmanns, 2017). Despite this, gonadal tissue was not significantly enriched in either the 

aforementioned general intelligence (Savage et al., 2018) or neuroticism GWAS (Nagel et al., 2018a). 

This may be the result of the additional power achieved using MOSTest.  
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Finally, we leveraged the boost in power from our multivariate analysis to improve discovery of 

genetic loci associated with agreeableness, conscientiousness, extraversion, and openness. This 

included, to the best of our knowledge, the first genetic loci reported for agreeableness. Genetic 

overlap between schizophrenia and neuroticism and openness has previously been reported using 

cFDR (Smeland et al., 2017). Interestingly, five of the six loci shared between schizophrenia and 

openness were also identified in our openness cFDR analysis. Nonetheless, larger samples are 

required to validate these findings. By re-ranking genetic variants according to the MOSTest-

informed cFDR values, we also improved polygenic prediction of conscientiousness and IQ. As has 

previously been shown for schizophrenia and bipolar disorder (van der Meer et al., 2020b), the PGSs 

outperformed standard GWAS-based ranking despite using the same weightings, suggesting that this 

method prioritises more predictive variants. This approach is similar to other recent examples using 

multivariate to enhance discovery (Roelfs et al., 2022) and prediction (Baselmans et al., 2019; Ip et 

al., 2021). Nonetheless, PGSs for agreeableness, extraversion, neuroticism, and openness failed to 

achieve adequate prediction in our independent test sample. This may have been due to a lack of 

statistical power, the use of different personality scales for the training (John et al., 1991) and test 

samples (Costa and McCrae, 2008), or cultural differences between the American 23andMe sample

(Lo et al., 2017) and the Norwegian, research-focussed TOP sample (Simonsen et al., 2011). 

Among multivariate approaches, MOSTest was particularly well suited for the analysis of multiple 

personality and cognitive traits (van der Meer et al., 2020a). MOSTest is more flexible than CCA 

since it can handle differences in sample size across included phenotypes and is more computationally 

efficient for high dimensional data (van der Meer et al., 2020a). By using permuted individual-level 

genotypes, MOSTest also robustly controls for type 1 error. It is also important to note that MOSTest 

differs fundamentally from genomic structural equation modelling (SEM) (Grotzinger et al., 2019), 

another widely used multivariate GWAS method. While genomic SEM models the latent factor 

underlying a matrix of genetic correlations, MOSTest models the multivariate distribution of included 

variables. This means MOSTest can identify variants which are shared across phenotypes even if they 

have mixed effect directions on each trait, which has been shown for many brain-related mental traits 

(Bahrami et al., 2021; Hindley et al., 2021; O’Connell et al., 2021). 
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There were limitations to this study. Firstly, this analysis only included European-ancestry 

participants due to differences in linkage disequilibrium between ancestral groups and a lack of large, 

deeply phenotyped non-White European samples. Larger samples and new methods for trans-

ancestral analysis are required to ensure the generalisability of these findings. Secondly, there were 

differences in sample size between measures. This means that the genetic associations captured by 

MOSTest are likely to be driven to a greater extent by measures with larger sample sizes and that z-

score estimates for measures with smaller sample sizes may be less precise. Despite this, we showed 

statistically significant associations with measures from both domains, supporting our main finding of 

pleiotropic effects. Thirdly, we combined cognitive measures taken at different timepoints during the 

study. While systematic differences in cognitive performance may subtly alter the results, it is 

unlikely to change the main findings of the study. Fourthly, MOSTest requires the use of individual 

level data. This limited our ability to include other personality traits in the main analysis which were 

not included in UKB. We mitigated this by using our multivariate analysis to boost discovery for the 

remaining four personality traits. Finally, we used MAGMA for gene-mapping, tissue enrichment and 

gene-set analyses, which does not incorporate eQTL or chromatin interaction gene-mapping. This 

increased the specificity of the gene-mapping approach and meant that the gene-set and tissue 

enrichment analyses were not biased by the selection of eQTL or chromatin interaction databases. 

However, this also reduced the sensitivity of our gene-mapping procedure. We considered this 

approach to be the most appropriate since gene discovery was not an explicit aim of the present study.  

Conclusions

By combining 35 item and task-level measures of mental functioning in a multivariate framework, we 

demonstrate that distinct cognitive and personality traits are influenced by hundreds of genetic 

variants with pleiotropic effects and mixed effect directions, despite minimal genetic and phenotypic 

correlations. This contributes to a growing body of evidence indicating that common genetic variants 

underlying complex mental traits are closely interrelated, suggesting that “the whole is more than the 

sum of its parts” for brain-related phenotypes. 
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STAR Methods 

Samples and phenotyping 

UK Biobank 

Genotypes, demographic, and clinical data were obtained from the UK Biobank. We selected 

unrelated (included in UKB genetic principal components calculation), white British individuals (as 

derived from both self-declared ethnicity and principal component analysis) with no sex chromosome 

aneuploidies (Bycroft et al., 2018) and genotyping call rate greater than 0.9. Participants who had 

withdrawn their consent were removed. This resulted in 337,145 individuals with mean age of 56.9 
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(standard deviation = 8.0 years). 53.7% were female. For the association analysis we retained only 

variants on autosomes with minor allele frequency above 0.001 imputation info score > 0.8 and with 

Hardy-Weinberg Equilibrium p-value > 1E-10, leaving 12.9 million variants. 

Table 1 and supplementary table 1 summarise the phenotypes included in our multivariate analysis. 

The UKB neuroticism items were derived from the Eysenck Personality Questionnaire-Revised Short 

Form (Eysenck et al., 1985). The scale was completed by all participants during enrolment at the 

assessment centre as part of the touchscreen assessment. All items comprised binary yes/no response 

options. Cognitive measures were collected at three different timepoints – either as part of the 

touchscreen cognitive assessment at enrolment (2006-2010), online cognitive follow-up (2014-2015) 

or during a follow-up imaging visit (2016). Some items from the touchscreen assessment were 

repeated during the cognitive follow-up and so were merged to maximise sample size. Included 

measures spanned a variety of cognitive domains, including verbal/numeric reasoning, prospective 

memory, working memory, non-verbal reasoning, visual declarative memory, processing speed and 

executive function (Fawns-Ritchie and Deary, 2020). All cognitive measures were coded so that 

larger values indicate better performance (i.e. shorter reaction time, less matching errors, faster task 

completion etc.). 

23andMe and CHARGE 

For our replication and cFDR analyses, summary statistics for 23andMe Big 5 personality traits  (Lo 

et al., 2017) and CHARGE general cognitive function (Davies et al., 2015) were accessed through 

collaborations. Sample make-up, genotyping procedures and phenotyping have been described in 

detail in the original publications (Davies et al., 2015; Lo et al., 2017). Briefly, the 23andMe samples 

comprised 59,225 individuals of European ancestry. Sum-scores for agreeableness, conscientiousness, 

extraversion, neuroticism, and openness were derived from the Big Five Inventory – 44-item edition 

(John et al., 1991). 23andMe customers completed the questionnaire online. The CHARGE general 

cognitive function sample comprised a meta-analysis of 53,949 participants of European ancestry 

from 31 cohorts. Cognitive function was assessed using a wide variety of different cognitive tests for 

fluid cognitive function. Each cohort included a minimum of three different tasks, and the principal 

component of included tasks for each cohort was computed to represent the “general cognitive 
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function” phenotype.  

TOP Sample 

The TOP sample comprised participants recruited as healthy controls for an observational study of 

severe mental illness. Participants were identified at random from the national population register. 

Inclusion criteria included the absence of current or previous psychiatric disorder as identified by the 

Primary Care Evaluation of Mental Disorders (Prime-MD) delivered by a trained research assistant 

(Spitzer et al., 1994). Exclusion criteria were substance use disorder, physical health condition, 

previous traumatic brain injury, neurological disorders, autism spectrum disorder, personal or family 

(1st degree relative) history of severe psychiatric disorder, and age outside of the range 13-72. Big 5 

personality traits were assessed using the revised Neuroticism-Extraversion-Openness Five Factor 

Inventory (NEO-FFI) (Costa and McCrae, 1989), Norwegian edition, a 60-item questionnaire 

comprising 5-point Likert scale responses. IQ was measured using the Wechsler Abbreviated Scale of 

Intelligence second addition (WASI-II) (Wechsler, 1999). Incomplete responses were dropped, 

leaving sample sizes of 587 for agreeableness, 600 for conscientiousness, 581 for extraversion, 598 

for neuroticism, 578 for openness and 1066 for IQ.  

Ethical considerations 

All participants provided informed consent. UKB participants who withdrew consent were excluded 

from the study. UK Biobank data was accessed under accession number 27412. The 23andMe sample 

participated under a protocol approved by the external AAHRPP-accredited IRB, Ethical & 

Independent Review Services (E&I Review). Participants were included in the analysis on the basis of 

consent status as checked at the time data analyses were initiated. The use of summary statistics for 

cFDR analysis was evaluated by The Norwegian Institutional Review Board: Regional Committees 

for Medical and Health Research Ethics (REC) South-East Norway and found that no additional 

ethical approval was required because no individual data were used. TOP received ethical approval 

from Norwegian REC (ref. 2009/2485), Data Inspectorate (ref. 03/02051), and The Norwegian 

Directorate of Health (ref. 05/5821).  

Data analysis 
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Pre-processing of UKB variables 

Prior to the association testing each item was manually pre-processed. Missing values were dropped 

from the analysis. Several continuous items with skewed and highly sparse distribution of answers 

were binarized. All continuous items were transformed using rank-based inverse normal 

transformation. Further details are provided in supplementary table 1.  

LD score regression heritability, genetic correlation, phenotypic correlation 

and hierarchical clustering 

Univariate h2
SNP and pairwise genetic correlations (rg) were estimated using LDSR (Bulik-Sullivan et 

al., 2015a, 2015b). Briefly, LDSR estimates univariate h2
SNP from GWAS summary statistics by 

modelling the relationship between variant-level effect size and extent of LD, building on the 

observation that the larger the region of LD the larger the effect size estimate. Genetic correlation is 

then computed as the co-variance of SNP effect size between two traits after controlling for LD. We 

performed hierarchical clustering on pair-wise genetic correlations using Agglomerative Clustering 

algorithm with distance function 1-|rg|, as implemented in sklearn Python package (Pedregosa et al., 

2011). Phenotypic correlations were computed using Spearman rank correlation as implemented in the 

Python package SciPy (Virtanen et al., 2020).  

MOSTest and min-P 

Plink2 (Purcell and Chang) was applied to perform item-level genotype-phenotype association testing 

using linear regression for continuous items and logistic regression for binary items with sex age and 

first 10 genetic principal components as covariates. In total we performed GWAS of 13 neuroticism 

and 26 cognition measures. Corresponding summary statistics were processed with LD score 

regression (Bulik-Sullivan et al., 2015b) to estimate SNP-heritabilities (supplementary table 2, 

supplementary figure 1) and genetic correlations between items (figure 1). Since including non-

heritable traits into MOSTest analysis may reduce statistical power (van der Meer et al., 2020a), only 

items with h2 p-value < 3.167E-5 were used for subsequent MOSTest and min-P analyses. This 

threshold recommended by the developers of LDSR-based SNP-heritability (Bulik-Sullivan et al., 

2015b) and has previously been used for large-scale heritability analyses of UKB genetic data 

(Walters). In total 35 measures (13 neuroticism and 22 cognition cognitive) passed this h2
SNP filter. 
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Variant z-scores from item and task-level GWAS for these 35 measures were combined in MOSTest 

and min-P analyses to produce multivariate p-values as described elsewhere (Shadrin et al., 2021). For 

MOSTest we selected regularization parameter (r=3) which provided the largest yield of genetic loci 

(Shadrin et al., 2021). We also performed MOSTest analyses for only neuroticism measures and only 

cognitive measures.  

Genetic overlap between MOSTest across univariate GWAS analyses was determined at the lead-

variant level. We extracted p-values for all MOSTest lead variants from each individual univariate 

GWAS for included measures. Genetic overlap was deemed present if the lead variant was significant 

in each pair of univariate GWAS at the specified significance threshold (p<5x10-8, p<1x10-6, p<1x10-

5). The same procedure was used to quantify overlap across the three multivariate analyses.  

We performed hierarchical clustering of univariate z-scores for each MOSTest-discovered lead 

variant. Hierarchical clustering was produced using AgglomerativeClustering algorithm with 

Euclidian distance, as implemented in sklearn Python package. Lead variants were split into 7 

clusters. For each variable we then estimated the median z-score over all variants in the cluster.  

Conditional/conjunctional false discovery rate  

We applied cFDR to boost discovery of genetic variants associated with the Big 5 personality traits 

and general cognitive function. Firstly, conditional qq-plots were constructed by comparing 

enrichment of association in all variants in the primary trait (i.e Big 5 personality traits or general 

cognitive function) with 3 subsets of variants defined by their strength of association (p<0.1, p<0.01 

and p<0.001) with the secondary trait (i.e. MOSTest summary statistics). Successive left-ward 

deflection with increasing threshold of significance indicates cross-trait enrichment. Shift in 

enrichment conditional on the secondary trait can be directly interpreted according to the Bayesian 

definition of the true discovery rate (TDR = 1-FDR), whereby a larger shift is consistent with a 

smaller FDR. This means cFDR values can be computed for each variant by comparing enrichment of 

all variants with a subset of variants which are as strongly or more strongly associated with the 

secondary trait. The cFDR value can therefore be interpreted as the probability that a given SNP is not 

associated with the primary trait given that the SNP is more strongly or as strongly associated with 
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both phenotypes than observed in the original GWAS. Look-up plots can therefore be constructed 

which provide cFDR values given the p-values in the primary and secondary traits. Conjunctional 

FDR statistic is subsequently computed by repeating the analysis having switched the primary and 

secondary trait. The maximum of the two cFDR statistics represents the probability that a given SNP 

is not associated with the primary or secondary trait given that the SNP is more strongly or as strongly 

associated with both phenotypes than observed in the original GWAS. We performed 100 iterations of 

each analysis after random pruning from independent LD blocks (r2>0.1). Genomic inflation was 

corrected for by a conservative genomic control procedure utilizing intergenic variants which lack 

true associations relative to other functional regions (Schork et al., 2013). The MHC region was 

excluded from the model-fitting procedure to prevent inflation of test statistics due to complex LD.  

Locus definition 

Genetic loci were defined based on association summary statistics produced with MOSTest, min-P 

and cFDR following the protocol implemented in FUMA with default parameters (Watanabe et al., 

2017). The protocol is summarised as follows: 

1. Independent significant genetic variants were identified as variants with p-value<5E-8 or

cFDR<0.05 and linkage disequilibrium (LD) r2<0.6 with each other.

2. A subset of these independent significant variants with LD r2<0.1 were selected as lead variants.

3. For each independent significant variant all candidate variants were identified as variants with LD

r2≥0.6.

4. For a given lead variant the borders of the genomic locus were defined as min/max positional

coordinates over all corresponding candidate variants.

5. Loci were merged if they were separated by less than 250kb.

Replication in independent samples 

We tested for en masse sign concordance of genetic effects in MOSTest-discovered lead SNPs 

between UKB fluid intelligence sum-score and CHARGE general cognitive function summary 

statistics, and UKB neuroticism sum-score and 23andMe neuroticism summary statistics. We dropped 

all variants which were not present in the independent summary statistics and variants with 
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ambivalent effect alleles. We first used an exact binomial test to test the null hypothesis that sign 

concordance was randomly distributed (p=0.5), given the total number of variants (n) and the number 

of variants with concordant effects in UKB and each independent dataset, respectively (k). To test for 

evidence of pleiotropic effects, we used an exact binomial test to test the null hypothesis that sign 

concordance in both neuroticism and cognitive function were randomly distributed (p=0.25), given 

the total number of variants (n) and the number of variants which were concordant in both phenotypes 

simultaneously. We also extracted p-values from the primary GWASs and reported the number of 

nominally significant variants in independent samples.  

Mapped genes, tissue specificity and gene-set analyses 

Gene-mapping of MOSTest GWAS summary statistics were performed using MAGMA as 

implemented in FUMA. The MHC region was excluded and all other settings were default. Gene 

analyses of individual items (supplementary results) were performed with MAGMA (version 1.09b) 

(de Leeuw et al., 2015) applying a SNP-wide mean model to GWAS summary statistics excluding 

variants within MHC region (chr6:25000000-33000000) 1000 Genomes Phase 3 EUR used as a 

reference panel and other settings being default. 18,952 genes were included in the analysis. 

Tissue specificity and gene-set enrichment analysis of MOSTest summary statistics was performed 

using MAGMA as implemented in FUMA (de Leeuw et al., 2015). Tissue specificity was tested in 

GTEx version 7 eQTL database (GTEx Consortium et al., 2017) across 53 “detail tissues” and 30 

“general tissues”. Gene-set enrichment was tested in Gene Ontology (Ashburner et al., 2000) and 

curated gene-sets from MsigDB (Liberzon et al., 2011) (n=10,678). Bonferroni correction was applied 

to correct for multiple comparisons.  

Since cFDR statistics are not applicable to MAGMA, genes were mapped to candidate SNPs by 

positional mapping, i.e. according to their physical proximity (<10kb) to each variant. We performed 

tissue specificity and gene-set analysis using the GENE2FUNC functionality in FUMA using default 

settings. Positionally mapped genes were used as input for all analyses. Over-representation of 

mapped genes within tissue-specific differentially expressed genes, and Gene Ontology and curated 

gene-sets was tested using a hypergeometric test. Correction for multiple comparisons was performed 
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using the Benjamini-Hochberg method.  

Polygenic score analysis 

PGSs were constructed using PRSice (Choi and O’Reilly, 2019) from summary statistics from 

23andMe Big 5 personality traits (Lo et al., 2017) and CHARGE general cognitive function (Davies et 

al., 2015). Using the pleioPGS approach (van der Meer et al., 2020b), we leveraged our multivariate 

analysis by comparing standard GWAS-ranked lead SNPs with cFDR-based ranking, using the same 

weights derived from the original GWAS (Baselmans et al., 2019; Ip et al., 2021; van der Meer et al., 

2020b). Sex, age and 20 principal components were included as covariates. cFDR and PGS plots were 

generated using the ggplot2 package in r as implemented in rstudio (Allaire, 2012; Team, 2013; 

Wickham, 2016). 

Data availability 

Individual-level UKB data is available through a publicly accessible application via UKB 

(https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access). The full GWAS summary 

statistics for the 23andMe discovery data set will be made available through 23andMe to qualified 

researchers under an agreement with 23andMe that protects the privacy of the 23andMe participants. 

Please visit https://research.23andme.com/collaborate/#dataset-access/ for more information and to 

apply to access the data. CHARGE general cognitive function summary statistics are publicly 

available at https://www.chargeconsortium.com/main/results.      

Code availability 

Code for MOSTest and cFDR are publicly available at 

https://github.com/precimed/mostest/tree/mental and https://github.com/precimed/pleiofdr.  

Supplementary Information 

1. Supplementary material: supplementary results and supplementary figures 1-9

2. Supplementary tables: Supplementary tables 1-22
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