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ORIGINAL ARTICLE

Molecular genetic aetiology of general cognitive function is
enriched in evolutionarily conserved regions
WD Hill1,2, G Davies1,2, SE Harris1,3, SP Hagenaars1,2,4, The neuroCHARGE Cognitive Working group8, DC Liewald1,2, L Penke1,5,6,
CR Gale1,2,7 and IJ Deary1,2

Differences in general cognitive function have been shown to be partly heritable and to show genetic correlations with several
psychiatric and physical disease states. However, to date, few single-nucleotide polymorphisms (SNPs) have demonstrated
genome-wide significance, hampering efforts aimed at determining which genetic variants are most important for cognitive
function and which regions drive the genetic associations between cognitive function and disease states. Here, we combine
multiple large genome-wide association study (GWAS) data sets, from the CHARGE cognitive consortium (n= 53 949) and UK
Biobank (n= 36 035), to partition the genome into 52 functional annotations and an additional 10 annotations describing tissue-
specific histone marks. Using stratified linkage disequilibrium score regression we show that, in two measures of cognitive function,
SNPs associated with cognitive function cluster in regions of the genome that are under evolutionary negative selective pressure.
These conserved regions contained ~ 2.6% of the SNPs from each GWAS but accounted for ~ 40% of the SNP-based heritability. The
results suggest that the search for causal variants associated with cognitive function, and those variants that exert a pleiotropic
effect between cognitive function and health, will be facilitated by examining these enriched regions.

Translational Psychiatry (2016) 6, e980; doi:10.1038/tp.2016.246; published online 13 December 2016

INTRODUCTION
Individual tests of cognitive function correlate positively, allowing
a single latent factor to be extracted from a battery of tests.1 This
general cognitive factor typically accounts for around 40% of the
phenotypic variation in a battery of mental tests and, in large
molecular genetic studies, has been shown to be heritable with
common genetic variants in total explaining around 30% of
phenotypic variation.2–4 A higher level of general cognitive
function is associated with better health across a range of
diseases, both psychiatric and physical, and with lower all-cause
mortality.5 More recently these phenotypic associations between
general cognitive function6 and individual tests of cognitive
function7 with health have been shown to be partly the result of
genetic correlations, indicating pleiotropy, meaning that health
states show positive correlations with cognitive function in part
because the same genetic variants are associated with both
cognitive function and health.6 However, although general
cognitive function, along with performance on individual tests
of cognitive function, is known to be heritable and to exhibit
genetic correlations with health states, for cognitive function, few
loci have attained genome-wide statistical significance.4,8 This
hampers the effort to understand how genetic variation can result
in individual differences in general cognitive function and in turn
how this is also associated with variation in health.
This large difference between the variance explained by single-

nucleotide polymorphisms (SNPs) that do reach genome-wide

significance and heritability estimates derived using all tested
SNPs, indicates that much of the heritability of general cognitive
function lies in SNPs that have not attained genome-wide
significance. Although an increase in sample size will result in an
increase in the power to detect significant effects of SNPs in a
genome-wide association study (GWAS),9 the problem remains of
organizing these individual hits into a coherent description of the
genetic architecture of cognitive function. Another method that
can both increase statistical power and facilitates an under-
standing of how genetic variation can result in phenotypic
variation is gene set analysis (GSA).10 GSA tests the hypothesis that
a set of genes, united by a shared biological function11 or their
previous association with another phenotype,12 jointly show an
association with the phenotype of interest. The GSA method
exploits phenotypes where a highly polygenic architecture is
evident by summing the small effects of multiple variants located
within the predefined gene set. GSA is not reliant on any single
variant attaining genome-wide significance. As such, statistical
power is increased as the number of statistical tests is reduced
and individual weak effects are combined together to produce a
stronger association signal.12,13

Multiple methods exist for the analysis of groups of SNPs
treated as the unit of association.10,14 However, many methods
assume only a single causal SNP in each of the genetic loci,15

which, along with being more likely to inflate the type 1 error
rate,16 also fails to model a polygenic architecture. Other methods
suffer from limitations such as requiring access to participants’
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genotypes,17 and other methods fail to account for linkage
disequilibrium (LD) that can lead to the same SNP being counted
multiple times within a single gene set.18 Here, we make use of a
recently developed method, stratified linkage disequilibrium score
regression,19 that requires access to only genome-wide associa-
tion summary level data. This method utilizes information from
each SNP in a functional category while explicitly modelling LD to
show whether a category is associated with a greater proportion
of the heritability of a trait than the proportion of SNPs it contains
would suggest. We apply this method to the current largest GWAS
on general cognitive function.4 We also examine specific tests of
cognitive function using the UK Biobank data set. We search for an
enrichment in the heritability found in 52 regions corresponding
to functional annotations from across cell types, and 10 corres-
ponding to cell-specific functional groups (see Supplementary
Table 1). We examine these functional categories, because the
distribution of significantly associated SNPs from hundreds of
GWAS have indicated that, across diverse phenotypes, significant
associations are more likely to be found in regulatory regions such
as DNaseI hypersensitivity sites,20 as well as in protein coding
regions21 and untranslated regions.22 DNaseI hypersensitivity sites
are regions of chromatin vulnerable to the DNase 1 enzyme, as the
chromatin in these regions has lost its condensed structure and
leaves the DNA exposed, whereas untranslated regions are
involved in the regulation of translation of RNA. In addition, the
role of evolutionarily conserved regions has been shown for
disease states and psychiatric disorders,19 many of which show
genetic correlations with the individual tests of cognitive function
used here.7 By examining the contributions of each of these
functional genetic categories, we aim to find regions of the
genome that have relatively prominent roles in individual
differences in general cognitive function.

MATERIALS AND METHODS
Samples
The data used for this study were the summary of GWAS statistics from the
CHARGE consortium study on general cognitive function in middle and
older age, which had a total of 53 949 individuals,4 and a study of verbal–
numerical reasoning (VNR) based on the UK Biobank8 with 36 035
individuals. We next derived a heritability Z-score for both of the data
sets that was defined as the heritability estimate produced by LDS
regression divided by its standard error. The magnitude of the heritability
Z-score is affected by three properties, sample size, SNP-based heritability
and the proportion of causal variants. An increase in these three properties
is associated with an increase in the heritability Z-score. This indicates that
the heritability Z-score is capturing information about the genetic
architecture of a trait, with traits that have sufficient power, from sample
size, high heritability and a high proportion of causal variants yield the
greatest heritability Z-scores.
Here, a heritability Z-score 47, as used in Finucane et al.19 was used as

evidence for a sufficient polygenic signal within the data set for use with
stratified LD regression. The CHARGE data set yielded a heritability Z-score
of 10.54 and in the VNR test a heritability Z-score of 9.64 was derived. This
indicates that both of these data sets have sufficient power for use with
stratified LDS regression.

Cognitive phenotypes
General cognitive function. The CHARGE cognitive working group
published a GWAS of general cognitive function in 53 949 middle and
older age adults.4 General cognitive function describes the statistically
revealed overlap between tests of cognitive function, that is, people who
do well on one type of cognitive test tend to do well on others. The
cognitive tests included in the general cognitive components used by the
CHARGE cognitive working group’s contributing cohorts generally measure
fluid cognitive functions. These are functions assessed by tests that tend to
include unfamiliar materials, that do not draw upon a participant’s level of
general knowledge, and that tend to show a negative trend with age. Each
of the CHARGE GWAS project’s cohorts used a different battery of mental
tests. Full details of the tests used to measure general fluid cognitive

function in each of the CHARGE consortium’s cohorts can be found in
Davies et al.4

Verbal–numerical reasoning. The VNR test in UK Biobank consists of a
series of 13 multiple choice questions that are answered in a 2 min time
period. Six of the items were verbal questions and the remaining seven
were numerical. An example of a verbal question is ‘Bud is to flower as
child is to?’ (Possible answers: ‘Grow/Develop/Improve/Adult/Old/Do not
know/Prefer not to answer’). An example numerical question is ‘If sixty is
more than half of seventy-five, multiply twenty-three by three. If not
subtract 15 from eighty-five. Is the answer?’ (Possible answers: ‘68/69/
70/71/72/Do not know/Prefer not to answer’). To some extent, these
questions draw upon materials and information that the participants
should be familiar with and the scores on this test are stable when
comparing the means between the ages of 40 and 60 years with a linear
decline evident from a comparison between the ages of 60 and 70.
Genotype data were available from 36 035 individuals who had completed
this test. Full details of the genotyping procedures used for this phenotype
can be found in Davies et al.8

Although a composite measure of general cognitive ability would have
been preferable to the use of a single test, some of the cognitive tests used
in UK Biobank are of poor quality. The tests of memory and reaction time
used in our previous Genome-Wide-Association Study (GWAS)8 had test–
retest correlations of 0.15 (n= 19 872) and 0.54 (n=20 188), respectively; in
addition, the memory score was based on one 3× 2 grid, and the reaction
time test on just four trials. In addition, neither of these two tests showed
significant genetic correlations with a general factor of cognitive ability
constructed using validated tests (memory, rg = 0.100, s.e. = 0.112,
P= 0.370, reaction time, rg = 0.067, s.e. = 0.089, P= 0.451).7 The VNR test,
which we used here, had 13 items, shows a greater level of test–retest
reliability (r= 0.65) and had a very high genetic correlation with a general
factor of cognitive ability (rg = 0.812, s.e. = 0.094, P= 6.2 × 10− 18). On the
basis of these findings we decided, a priori, not to include the memory or
reaction time tests from our previous GWAS as they are unreliable and
appear to have a very different genetic architecture from established
indicators of general cognitive function.

Statistical analysis
Genetic correlations between phenotypes. Owing to the phenotypic
overlap between tests of cognitive function,1 we first examine the degree
to which the VNR measure from UK Biobank overlaps genetically with
general cognitive function. Genetic correlations were derived using the
summary statistics from general cognitive function in CHARGE and VNR in
UK Biobank sets using LD score regression.23 The same data processing
pipeline was used here as by Bulik-Sullivan et al.23 where a minor allele
frequency of 40.01 was used and only those SNPs found in the HapMap3
with 1000 Genomes EUR with a minor allele frequency of 40.5 were
retained. The integrated_phase1_v3.20101123 was used for LDS regres-
sion. Also, Indels, structural variants and strand-ambiguous SNPs were
removed. Genome-wide significant SNPs were removed, as well as SNPs
with effect sizes of χ2480, as the presence of outliers can increase the
standard error in a regression model. LD scores and weights for use with
the GWAS of European ancestry were downloaded from the Broad Institute
(http://www.broadinstitute.org/ ~ bulik/eur_ldscores/).

Partitioned heritability. General cognitive function4 and VNR8 were
analysed using stratified LD score regression, where we followed the data
processing steps of Finucane et al.19 Stratified LD score regression belongs
to a class of techniques that exploit the correlated nature of SNPs. Using
this method, heritability can be derived by regressing SNP’s association
statistic (converted to a Z-score) onto its LD score. An LD score is the sum
of squared correlations between the minor allele count of a SNP, with the
minor allele count of every other SNP. As the correlational structure of the
genome (LD) is used in deriving the heritability estimate, LD is controlled
for. A full description of how this method works can be found in Finucane
et al.19 This heritability estimate is then used to derive an enrichment
metric defined as the proportion of heritability captured by the functional
annotation over the proportion of SNPs contained within it, (Pr(h2)/Pr
(SNPs)). This ratio describes whether a functional annotation contains a
greater or lesser proportion of the heritability than would be predicted by
the proportion of SNPs it contains, Pr(h2)/Pr(SNPs) = 1. The proportion of
the heritability for each category is used as the numerator, rather than the
heritability of each category. This is due to Genomic Control (GC) being
performed on most GWAS data sets and, as a result, the attenuation of the
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heritability estimate affects the total heritability and the heritability of each
SNP set equally. As these are biased in the same direction and by the same
amount, the proportion of heritability accounted for by each SNP set
remains unaffected by the GC correction although the absolute heritability
may change. Stratified LD scores were calculated from the European
ancestry samples in the 1000 Genomes project (1000G) and only included
the HapMap3 SNPs with a minor allele frequency of 40.05.
The same functional annotations as those reported in Finucane et al.19

were used. First, SNPs were assigned to a set of 24 overlapping publically
available functional annotations. Supplementary Table 1 details the full set
of these functional categories, as well as the references used to construct
them. An additional 500 bp window was placed around these annotations
to prevent estimates being biased upwards by capturing enrichment in
regions located close to the functional annotations.24 A 100 bp window
was also placed around chromatin immunoprecipitation and sequencing
(ChIP-seq) peaks; the inclusion of these additional four sets resulted in a
total of 52 overlapping functional SNP annotations which formed our
baseline model. In addition, a further 10 sets were examined. These sets
consisted of 220 cell-type-specific annotations for four histone marks
(H3K4me1, H3K4me3, H3K9ac and H3K27ac), which were arranged into 10
broad categories corresponding to histone marks found in the central
nervous system, immune and hematopoietic, adrenal/pancreas, cardiovas-
cular, connective tissue, gastrointestinal, kidney, liver, skeletal muscle and
other. The SNP sets examined here are not independent and the same SNP
can appear in many of the sets examined here. The size of each of the SNP
sets can be found in Supplementary Tables 2 and 3.
The 10 broad cell-type categories were then analysed by adding each of

them to the full baseline model. This resulted in 10 additional tests, which
included the baseline model and one of the 10 cell-type-specific
groupings. In this way, enrichment for these cell-specific annotations
was not driven by their also being a part of the baseline model. Multiple
testing was controlled for by using false discovery rate correction applied
to these 10 tests.

RESULTS
Genetic correlation
LDS regression was first used to determine the degree of overlap
between the two cognitive phenotypes used. The genetic

correlation between general cognitive function and VNR was
rg = 0.783, s.e. = 0.056, P= 4.63 × 10− 45 indicating that many of the
same genetic variants are involved in both these traits.

Partitioned heritability
General cognitive function in the CHARGE consortium. Significant
enrichment was found for 10 of the 52 functional annotations
(Supplementary Figure 1 and Supplementary Table 2). Consistent
with many quantitative traits,19,25 SNPs that are found in
evolutionarily conserved regions showed a high level of enrich-
ment, where 2.5% of the SNPs accounted for 49.2% of the total
heritability yielding an enrichment metric defined as Pr(h2)/Pr
(SNPs) of 18.87 (s.e. = 3.91), P= 4.88 × 10− 6. Note that this does not
mean that the 3% of the genome accounts for 40% of the total
phenotypic variance; rather, it means that, of the 30% of
phenotypic variance accounted for by common SNPs, the genetic
variation in the ~ 3% of the genome accounts for 40% of that 30%.
Statistically significant enrichment was also found after a 500 bp
boundary was set around these regions (Figure 1).
Enrichment was also found for two of the histone marks,

H3K9ac, where 46.3% of the heritability was found for 12.6% of
SNPs (enrichment metric = 3.68, s.e. = 1.01, P= 0.008), and within
500 bp of H3K4me1, where 60.9% of the SNPs collectively
explained 87.5% of the total heritability (enrichment metric = 1.44,
s.e. = 0.15, P= 0.004). SNPs located within 500 bp of repressed
regions showed a significant reduction in the level of heritability
they captured. These regions accounted for 71.9% of the SNPs, but
only explained 44.3% of the heritability (enrichment metric = 0.62,
s.e. = 0.09, P= 2.10 × 10− 5).
Statistically significant enrichment was also found for SNPs

within 500 bp of weak enhancer regions which comprised 8.9% of
the SNPs, that collectively explained 38.1% of the heritability of
general cognitive function (enrichment metric = 4.28, s.e. = 1.03,
P= 0.001). SNPs within 500 bp of the functional category of DNase
hypersensitivity sites also demonstrated significant enrichment for

Figure 1. A comparison between the functional annotations that were significantly enriched for general cognitive function. Enrichment was
also found in evolutionarily conserved regions for verbal–numerical reasoning. Significant enrichment was also found across the phenotypes
for single-nucleotide polymorphisms (SNPs) within 500 bp of introns and within 500 bp of the H3K4me1 histone mark. The enrichment
statistic is the proportion of heritability found in each functional group divided by the proportion of SNPs in each group (Pr(h2)/Pr(SNPs)). The
dashed line indicates no enrichment found when Pr(h2)/Pr(SNPs)= 1. Statistical significance is indicated with asterisk.
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general cognitive function (enrichment metric = 2.05, s.e. = 0.33).
These regions accounted for 49.9% of the SNPs but captured
100% of the heritability (s.e. = 16%). Although this does appear to
be capturing the sum of the heritability present, it is not clear
whether this is biologically meaningful as the inclusion of SNPs
within 500 bp of this category raises the proportion of SNPs in the
category from 17% to 50% indicating that the majority of the SNPs
within the larger set are not at DNaseI hypersensitivity site. SNPs
found within 500 bp of introns were also significantly enriched,
accounting for 39% of the SNPs and 56% of the heritability of
general cognitive function, P= 7.45 × 10− 4.
The results for the cell type enrichment analysis indicated that

histones that are marked specifically in cell types of the central
nervous system accounted for 14.9% of the SNPs, but 45.0% of the
heritability (enrichment metric = 3.03, s.e. = 0.51, P= 6.37 × 10− 5).
The results for the 10 tissue types can be seen in Supplementary
Figure 2. The full results for general cognitive function can be
found in Supplementary Table 2.

VNR in the UK Biobank sample. The pattern of enrichment
followed the same trend for VNR as for general cognitive function.
Four of the five functional annotations found to be significantly
enriched in general cognitive function were also enriched for VNR
(Supplementary Figure 3 and Supplementary Table 3). For the
baseline model, evolutionarily conserved SNPs were found to
explain an enriched proportion of the heritability; 2.6% of SNPs
were found to explain 41.2% of the heritability (enrichment
metric = 15.80, s.e. = 4.42, P= 8.19 × 10− 4). As was found for
general cognitive function, SNPs within 500 bp of introns also
showed enrichment for heritability (enrichment metric = 1.2,
s.e. = 0.14, P= 0.003). This category contained 39.7% of the SNP
that explained 56.2% of the heritability. Unlike general cognitive
function, SNPs within 500 bp of the histone mark H3K9ac showed
significant enrichment, rather than only SNPs found within this
annotation (enrichment metric 2.5, s.e. = 0.48, P= 0.002). This
category contained 23.1% of the SNPs, which explained 58.1% of
the heritability for VNR in the UK Biobank data set.
As was found in general cognitive function, histone marks

specifically expressed in the central nervous system were found to
contain a greater proportion of heritability (enrichment metric =
3.53, s.e. = 0.60, P= 2.40 × 10− 5). The enrichment results for each
of the 10 tissue types can be seen in Supplementary Figure 4 and
the full results for VNR can be found in Supplementary Table 3.
Figure 1 illustrates the significant annotations for general

cognitive function and provides a comparison for how well these
regions were enriched for VNR.

DISCUSSION
We partitioned the total heritability found in two large, genetically
correlated (rg = 0.783, s.e. = 0.056) GWAS data sets on cognitive
function into 24 broad functional annotations and 10 tissue types.
Our analysis modelled LD, and took into account overlapping
categories, as well as the proportion of SNPs in each category. We
make a number of contributions to understanding the genetic
architecture of cognitive function.
We find, for both of the cognitive phenotypes examined, the

most substantial and statistically significant effects occurred in
regions of the genome that are evolutionarily conserved in
mammals. The SNPs within these regions accumulate the base-
pair substitutions that differentiate species at a lower rate than
would be expected under models of neutral selective pressure
and these regions are depleted for the number of SNPs compared
with regions that are not conserved. This indicates that a large
portion of the common variants that are associated with cognitive
function are under negative selective pressure. That 40% of the
genetic variance in general cognitive function is under negative
selection does not imply that higher cognitive function is

evolutionarily selected for, but that genetic variance that disrupts
the evolutionarily old adaptive design encoded in these regions,
thereby decreasing healthy cognitive function, is selected against.
This supports the idea that mutation-selection balance has a
substantial role in the genetics of general cognitive function,26

particularly when mutational variation is introduced in evolutio-
narily conserved regions.
Evolutionarily conserved regions are unlikely to be specific to

cognitive function, but rather to underlie fundamental design
features important for general phenotypic functioning. The
evolutionarily conserved regions used in the current paper have
also been examined for enrichment with several disease- and
health-related phenotypes. Significant enrichment was found for
body mass index, schizophrenia and high-density lipoprotein
cholesterol, but not for coronary artery disease, type 2 diabetes,
low-density lipoprotein cholesterol or bipolar disorder.19 The
diseases and traits that were enriched in these conserved regions
each show a genetic correlation with general cognitive function
and individual tests of cognitive function (see refs 6,7 and Hill et al.
(in prep)), whereas those that showed no enrichment at
evolutionarily conserved regions were not genetically correlated
with general cognitive function or the VNR test used here.7 This
suggests that not only do these evolutionarily conserved regions
of the genome have a greater role in cognitive functions, but they
may also harbour variants with pleiotropic effects on cognitive
function, health and anthropometric traits, thereby reducing what
has been varyingly called system integrity, developmental stability
or general evolutionary fitness.26,27

Two previous studies using GSA have found that gene sets that
are conserved between species are enriched for cognitive
functions. A study by Hill et al.11 found that common SNPs in
the N-methyl-D-aspartate receptor complex were enriched for
general cognitive function in two independent groups. The N-
methyl-D-aspartate receptor complex is a component within the
postsynaptic density (PSD), and using comparative proteomic
analysis of the human and mouse PSD it has been found that the
molecular composition of the postsynaptic density was highly
similar, with more than 70% of the proteins found in the human
PSD being found in the mouse PSD28 indicating conservation
between species. A high level of conservation has also been found
between the proteins of the PSD in comparisons between human
and chimp (last common ancestor (LCA) ~ 6 million years ago), as
well as between mouse and rat (LCA 20 million years ago) and
between human and mouse (LCA 90 million years ago), indicating
conservation or negative selection indicative of conservation
across the mammalian line.29

More recently, Johnson et al.30 used the weighted gene co-
expression network analysis to identify a novel module named M3
using cortical brain tissue extracted from living humans during
surgery. This module was also present in both disease-free
humans and in wild-type mouse hippocampi, indicating it had
been conserved between both species. In addition, this module
was found to be enriched for SNPs associated with general
cognitive function and memory in two independent samples. The
M3 also mapped poorly onto known biology, including the PSD,
differentiating it from the N-methyl-D-aspartate receptor complex
finding. In the current paper, we extend the findings of Hill et al.11

and Johnson et al.30 by considering all the SNPs, not just those
found within genes, and show that regions of the genome that are
under negative selective pressure harbour an enriched proportion
of the heritable variance for cognitive function.
The gene sets used by Hill et al.11 and Johnson et al.30 were

constructed to test specific synaptic components and networks of
genes that work together. However, both of these gene sets are
under selective pressure, the current paper expands on the
findings of Hill et al.11 and Johnson et al.30 by showing that
conserved regions, not just those found within genes, are
enriched for cognitive function.
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These results are also consistent with both theoretical
predictions,31,32 and empirical findings33 of directional dominance
acting on cognitive function. Directional selection is expected in
traits that are related to fitness, and indicates a systematic
direction of effect across causal loci. By examining runs of
homozygosity, directional dominance can be seen when the
phenotype of individuals that are homozygous for multiple
locations differs from those that are heterozygous. Joshi et al.33

examined runs of homozygosity in 354 224 individuals who had
taken tests of cognitive ability and found that as homozygosity
increased, scores on tests of cognitive ability went down,
indicating selective pressure acting to increase levels of cognitive
function. The present study expands on the works of Joshi et al.33

by providing evidence that the regions of the genome most
sensitive to genetic variation are more likely to harbour the
variants that make the greatest contributions to cognitive and
health differences.
SNPs within 500 bp of introns also showed significant enrich-

ment for general cognitive function and for VNR. Enrichment for
this region may indicate that, although not being translated into
proteins, these regions may still exert an influence on individual
differences in cognitive function. Indeed, Marioni et al.34 have
suggested that intronic regions are more likely to harbour genetic
variation associated with normal cognitive function than exomic
regions. In addition, SNPs within 500 bp of the H3K4Me1 histone
mark were enriched across both cognitive phenotypes. General
cognitive function has been shown to correlate highly with tests
of crystallized function, and in the present study the genetic
correlation with VNR was rg = 0.783 indicating that many of the
same SNPs are involved in both facets of cognitive function. This
overlap between these two phenotypes may therefore be driven
by pleiotropic variants in introns and variants found in the
H3K4Me1 histone mark, along with those that are evolutionarily
conserved.
The strengths of this study include the use of the largest GWAS

of general cognitive function that used established cognitive tests
to measure cognitive function. We also use data from the UK
Biobank study that includes over 30 000 participants genotyped
and processed together using the same VNR test administered in
an identical way to remove processing artefacts owing to
heterogeneity in test used and their administration. In addition,
the genetic data from UK Biobank were processed in a consistent
manner.
The limitations of this study include the VNR test used in UK

Biobank not being adequately compared to validated psycho-
metric cognitive tests. Also the low response rate in UK Biobank of
5% (ref. 35) indicates that it may not be representative of the
general population. A further limitation is the use of a general
cognitive function phenotype derived from meta-analysis of many
smaller studies. Heterogeneity in testing conditions and between
different genotyping platforms could introduce a confound that
could not have been controlled for here. However, it should be
noted that these limitations would take away the power to find an
effect should it be present and indicate the robust nature of the
results. Future studies using more psychometrically rigorous tests
and a sample drawn from across the population are therefore
expected to provide additional insights into the genetic archi-
tecture of cognitive function. There may also have been a small
number of individuals who took part in both CHARGE and UK
Biobank. In addition, the stratified LD score regression method is
based on an additive model and cannot detect epistatic effects or
other sources of non-additive variance. Finally, as with other
methods of GSA, these methods are limited to the availability and
accuracy of the annotations used.
Following partitioned heritability analysis, we report that

regions of the genome under negative selective pressure make
a greater contribution to the heritability of cognitive functions
than their size would suggest. This indicates that causal alleles are

not distributed evenly across the genome but, rather, cluster in
regions that are conserved. Disease states and anthropometric
traits that show genetic correlations with cognitive function tend
to show enrichment in these conserved regions; on the other
hand, the diseases and traits that do not show genetic correlations
with cognitive function tend not to show this pattern of
enrichment. Together, this suggests that conserved regions may
have a central role in mammalian genetic architecture as they
appear to harbour variants with pleiotropic effects between
cognitive function, diseases and anthropometric traits. This
suggests that understanding the function and role of variants
that are under negative selection will provide a greater under-
standing of cognitive function as well as how cognitive function is
related to other health-related traits.23 That the variants here are
known to be conserved within the mammalian line may also be
involved in general cognitive function in other species.36 In
addition, this study aids the search for plausible sets of causal
variants by showing that a reduced portion of the genome
comprising, only ~ 2.5% of the total number of SNPs, can explain
around ~ 40% of the SNP-based heritability (which is ~ 30%) of
cognitive function.
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