138 research outputs found
Gold-Catalyzed Intramolecular Aminoarylation of Alkenes: C-C Bond Formation through Bimolecular Reductive Elimination
Gold-ilocks and the 3â
molâ% catalyst: Bimetallic gold bromides allow the room temperature aminoarylation of unactivated terminal olefins with aryl boronic acids using Selectfluor as an oxidant. A catalytic cycle involving gold(I)/gold(III) and a bimolecular reductive elimination for the key CC bond-forming step is proposed. dppm= bis(diphenylphosphanyl)methane
Alkylgold complexes by the intramolecular aminoauration of unactivated alkenes
Alkylgold(I) complexes were formed from the gold(I)-promoted intramolecular addition of various amine nucleophiles to alkenes. These experiments provide the first direct experimental evidence for the elementary step of gold-promoted nucleophilic addition to an alkene. Deuterium-labeling studies and X-ray crystal structures provide support for a mechanism involving anti-addition of the nucleophile to a gold-activated alkene, which is verified by DFT analysis of the mechanism. Ligand studies indicate that the rate of aminoauration can be drastically increased by use of electron-poor arylphosphines, which are also shown to be favored in ligand exchange experiments. Attempts at protodeauration lead only to recovery of the starting olefins, though the gold can be removed under reducing conditions to provide the purported hydroamination products
Iron(III) Triflimide as a catalytic substitute for gold(I) in hydroaddition reactions to unsaturated carbon-carbon bonds
[EN] In this work it is shown that iron(III) and gold(I) triflimide efficiently catalyze the hydroaddition of a wide array of nucleophiles including water, alcohols, thiols, amines, alkynes, and alkenes to multiple CC bonds. The study of the catalytic activity and selectivity of iron(III), gold(I), and BrOnsted triflimides has unveiled that iron(III) triflimide [Fe(NTf2)3] is a robust catalyst under heating conditions, whereas gold(I) triflimide, even stabilized by PPh3, readily decomposes at 80 degrees C and releases triflimidic acid (HNTf2) that can catalyze the corresponding reaction, as shown by in situ 19F, 15N, and 31PNMR spectroscopy. The results presented here demonstrate that each of the two catalyst types has weaknesses and strengths and complement each other. Iron(III) triflimide can act as a substitute of gold(I) triflimide as a catalyst for hydroaddition reactions to unsaturated carbon-carbon bonds.The work has been supported by Consolider-Ingenio 2010 (proyecto MULTICAT). J.R.C.A. thanks MCIINN for the concession of a pre-doctoral FPU fellowship. A. L. P. thanks ITQ for financial support.Cabrero Antonino, JR.; Leyva Perez, A.; Corma CanĂłs, A. (2013). Iron(III) Triflimide as a catalytic substitute for gold(I) in hydroaddition reactions to unsaturated carbon-carbon bonds. Chemistry - A European Journal. 19(26):8627-8633. https://doi.org/10.1002/chem.201300386S862786331926Brenzovich, W. E. (2012). Gold in der Totalsynthese: Alkine als Carbonylersatz. Angewandte Chemie, 124(36), 9063-9065. doi:10.1002/ange.201204598Brenzovich, W. E. (2012). Gold in Total Synthesis: Alkynes as Carbonyl Surrogates. Angewandte Chemie International Edition, 51(36), 8933-8935. doi:10.1002/anie.201204598Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813Corma, A., Leyva-PeÌrez, A., & Sabater, M. J. (2011). Gold-Catalyzed CarbonâHeteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414uKrause, N., & Winter, C. (2011). Gold-Catalyzed Nucleophilic Cyclization of Functionalized Allenes: A Powerful Access to Carbo- and Heterocycles. Chemical Reviews, 111(3), 1994-2009. doi:10.1021/cr1004088Huang, H., Zhou, Y., & Liu, H. (2011). Recent advances in the gold-catalyzed additions to CâC multiple bonds. Beilstein Journal of Organic Chemistry, 7, 897-936. doi:10.3762/bjoc.7.103Hashmi, A. S. K. (2010). Homogene Gold-Katalyse jenseits von Vermutungen und Annahmen - charakterisierte Intermediate. Angewandte Chemie, 122(31), 5360-5369. doi:10.1002/ange.200907078Hashmi, A. S. K. (2010). Homogeneous Gold Catalysis Beyond Assumptions and Proposals-Characterized Intermediates. Angewandte Chemie International Edition, 49(31), 5232-5241. doi:10.1002/anie.200907078Beaumont, S. K., Kyriakou, G., & Lambert, R. M. (2010). Identity of the Active Site in Gold Nanoparticle-Catalyzed Sonogashira Coupling of Phenylacetylene and Iodobenzene. Journal of the American Chemical Society, 132(35), 12246-12248. doi:10.1021/ja1063179Marion, N., RamoÌn, R. S., & Nolan, S. P. (2009). [(NHC)AuI]-Catalyzed Acid-Free Alkyne Hydration at Part-per-Million Catalyst Loadings. Journal of the American Chemical Society, 131(2), 448-449. doi:10.1021/ja809403eGrirrane, A., Corma, A., & Garcia, H. (2008). Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 322(5908), 1661-1664. doi:10.1126/science.1166401Corma, A., & Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096. doi:10.1039/b707314nGonzĂĄlez-Arellano, C., Abad, A., Corma, A., GarcĂa, H., Iglesias, M., & SĂĄnchez, F. (2007). Catalysis by Gold(I) and Gold(III): A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions. Angewandte Chemie, 119(9), 1558-1560. doi:10.1002/ange.200604746GonzĂĄlez-Arellano, C., Abad, A., Corma, A., GarcĂa, H., Iglesias, M., & SĂĄnchez, F. (2007). Catalysis by Gold(I) and Gold(III): A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions. Angewandte Chemie International Edition, 46(9), 1536-1538. doi:10.1002/anie.200604746Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436xWienhöfer, G., Westerhaus, F. A., Jagadeesh, R. V., Junge, K., Junge, H., & Beller, M. (2012). Selective iron-catalyzed transfer hydrogenation of terminal alkynes. Chemical Communications, 48(40), 4827. doi:10.1039/c2cc31091kCabrero-Antonino, J. R., Leyva-PĂ©rez, A., & Corma, A. (2012). Iron-Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis & Catalysis, 354(4), 678-687. doi:10.1002/adsc.201100731Cabrero-Antonino, J. R., Leyva-PĂ©rez, A., & Corma, A. (2012). Regioselective Hydration of Alkynes by Iron(III) Lewis/BrĂžnsted Catalysis. Chemistry - A European Journal, 18(35), 11107-11114. doi:10.1002/chem.201200580Boddien, A., Mellmann, D., Gartner, F., Jackstell, R., Junge, H., Dyson, P. J., ⊠Beller, M. (2011). Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science, 333(6050), 1733-1736. doi:10.1126/science.1206613Sun, C.-L., Li, B.-J., & Shi, Z.-J. (2011). Direct CâH Transformation via Iron Catalysis. Chemical Reviews, 111(3), 1293-1314. doi:10.1021/cr100198wJunge, K., Schröder, K., & Beller, M. (2011). Homogeneous catalysis using iron complexes: recent developments in selective reductions. Chemical Communications, 47(17), 4849. doi:10.1039/c0cc05733aZhou, S., Fleischer, S., Junge, K., Das, S., Addis, D., & Beller, M. (2010). Asymmetrische Synthese von Aminen: eine allgemeine und effiziente eisenkatalysierte enantioselektive Transferhydrierung von Iminen. Angewandte Chemie, 122(44), 8298-8302. doi:10.1002/ange.201002456Zhou, S., Fleischer, S., Junge, K., Das, S., Addis, D., & Beller, M. (2010). Enantioselective Synthesis of Amines: General, Efficient Iron-Catalyzed Asymmetric Transfer Hydrogenation of Imines. Angewandte Chemie International Edition, 49(44), 8121-8125. doi:10.1002/anie.201002456Cabrero-Antonino, J. R., Leyva-PĂ©rez, A., & Corma, A. (2010). Iron-Catalysed Regio- and Stereoselective Head-to-Tail Dimerisation of Styrenes. Advanced Synthesis & Catalysis, 352(10), 1571-1576. doi:10.1002/adsc.201000096Zhou, S., Junge, K., Addis, D., Das, S., & Beller, M. (2009). A Convenient and General Iron-Catalyzed Reduction of Amides to Amines. Angewandte Chemie, 121(50), 9671-9674. doi:10.1002/ange.200904677Zhou, S., Junge, K., Addis, D., Das, S., & Beller, M. (2009). A Convenient and General Iron-Catalyzed Reduction of Amides to Amines. Angewandte Chemie International Edition, 48(50), 9507-9510. doi:10.1002/anie.200904677Kohno, K., Nakagawa, K., Yahagi, T., Choi, J.-C., Yasuda, H., & Sakakura, T. (2009). Fe(OTf)3-Catalyzed Addition of sp CâH Bonds to Olefins. Journal of the American Chemical Society, 131(8), 2784-2785. doi:10.1021/ja8090593Correa, A., GarcĂa Mancheño, O., & Bolm, C. (2008). Iron-catalysed carbonâheteroatom and heteroatomâheteroatom bond forming processes. Chemical Society Reviews, 37(6), 1108. doi:10.1039/b801794hMichaux, J., Terrasson, V., Marque, S., Wehbe, J., Prim, D., & Campagne, J.-M. (2007). Intermolecular FeCl3-Catalyzed Hydroamination of Styrenes. European Journal of Organic Chemistry, 2007(16), 2601-2603. doi:10.1002/ejoc.200700023Bolm, C., Legros, J., Le Paih, J., & Zani, L. (2004). Iron-Catalyzed Reactions in Organic Synthesis. Chemical Reviews, 104(12), 6217-6254. doi:10.1021/cr040664hFĂŒrstner, A., Leitner, A., MĂ©ndez, M., & Krause, H. (2002). Iron-Catalyzed Cross-Coupling Reactions. Journal of the American Chemical Society, 124(46), 13856-13863. doi:10.1021/ja027190tKischel, J., Jovel, I., Mertins, K., Zapf, A., & Beller, M. (2006). A Convenient FeCl3-Catalyzed Hydroarylation of Styrenes. Organic Letters, 8(1), 19-22. doi:10.1021/ol0523143Patil, N. T., Kavthe, R. D., & Shinde, V. S. (2012). Transition metal-catalyzed addition of C-, N- and O-nucleophiles to unactivated CâC multiple bonds. Tetrahedron, 68(39), 8079-8146. doi:10.1016/j.tet.2012.05.125Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616Hashmi, A. S. K. (2007). Homogeneous gold catalysis: The role of protons. Catalysis Today, 122(3-4), 211-214. doi:10.1016/j.cattod.2006.10.006Hashmi, A. S. K., Schwarz, L., Rubenbauer, P., & Blanco, M. C. (2006). The Condensation of Carbonyl Compounds with Electron-Rich Arenes: Mercury, Thallium, Gold or a Proton? Advanced Synthesis & Catalysis, 348(6), 705-708. doi:10.1002/adsc.200505464Williamson, K. S., & Yoon, T. P. (2012). Iron Catalyzed Asymmetric Oxyamination of Olefins. Journal of the American Chemical Society, 134(30), 12370-12373. doi:10.1021/ja3046684Hashmi, A. S. K., Braun, I., Nösel, P., SchĂ€dlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Eine einfache Gold-katalysierte Synthese von Benzofulvenen -gem-diaurierte Spezies als «Instant-Dual-Activation»-PrĂ€katalysatoren. Angewandte Chemie, 124(18), 4532-4536. doi:10.1002/ange.201109183Hashmi, A. S. K., Braun, I., Nösel, P., SchĂ€dlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Simple Gold-Catalyzed Synthesis of Benzofulvenes-gem-Diaurated Species as «Instant Dual-Activation» Precatalysts. Angewandte Chemie International Edition, 51(18), 4456-4460. doi:10.1002/anie.201109183Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metalltriflimidate sind bessere Katalysatoren fĂŒr die organische Synthese als Metalltriflate - der Effekt eines stark delokalisierten Gegenions. Angewandte Chemie, 122(43), 8032-8060. doi:10.1002/ange.200906407Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metal Triflimidates: Better than Metal Triflates as Catalysts in Organic Synthesis-The Effect of a Highly Delocalized Counteranion. Angewandte Chemie International Edition, 49(43), 7860-7888. doi:10.1002/anie.200906407Ricard, L., & Gagosz, F. (2007). Synthesis and Reactivity of Air-Stable N-Heterocyclic Carbene Gold(I) Bis(trifluoromethanesulfonyl)imidate Complexes. Organometallics, 26(19), 4704-4707. doi:10.1021/om7006002Dang, T. T., Boeck, F., & Hintermann, L. (2011). Hidden BrĂžnsted Acid Catalysis: Pathways of Accidental or Deliberate Generation of Triflic Acid from Metal Triflates. The Journal of Organic Chemistry, 76(22), 9353-9361. doi:10.1021/jo201631xTaylor, J. G., Adrio, L. A., & Hii, K. K. (Mimi). (2010). Hydroamination reactions by metal triflates: BrĂžnsted acid vs. metal catalysis? Dalton Trans., 39(5), 1171-1175. doi:10.1039/b918970jKovaÌcs, G., LledoÌs, A., & Ujaque, G. (2010). Mechanistic Comparison of Acid- and Gold(I)-Catalyzed Nucleophilic Addition Reactions to Olefins. Organometallics, 29(22), 5919-5926. doi:10.1021/om1007192Li, Z., Zhang, J., Brouwer, C., Yang, C.-G., Reich, N. W., & He, C. (2006). BrĂžnsted Acid Catalyzed Addition of Phenols, Carboxylic Acids, and Tosylamides to Simple Olefins. Organic Letters, 8(19), 4175-4178. doi:10.1021/ol0610035(s. f.). doi:10.1021/ol061174Wabnitz, T. C., Yu, J.-Q., & Spencer, J. B. (2004). Evidence That Protons Can Be the Active Catalysts in Lewis Acid Mediated Hetero-Michael Addition Reactions. Chemistry - A European Journal, 10(2), 484-493. doi:10.1002/chem.200305407Penzien, J., Su, R. Q., & MĂŒller, T. E. (2002). The role of protons in hydroamination reactions involving homogeneous and heterogeneous catalysts. Journal of Molecular Catalysis A: Chemical, 182-183, 489-498. doi:10.1016/s1381-1169(01)00496-4WeĂŻwer, M., Coulombel, L., & Duñach, E. (2006). Regioselective indium(iii) trifluoromethanesulfonate-catalyzed hydrothiolation of non-activated olefins. Chem. Commun., (3), 332-334. doi:10.1039/b513946eLeyva, A., & Corma, A. (2009). Isolable Gold(I) Complexes Having One Low-Coordinating Ligand as Catalysts for the Selective Hydration of Substituted Alkynes at Room Temperature without Acidic Promoters. The Journal of Organic Chemistry, 74(5), 2067-2074. doi:10.1021/jo802558eLeyva, A., & Corma, A. (2009). Reusable Gold(I) Catalysts with Unique Regioselectivity for Intermolecular Hydroamination of Alkynes. Advanced Synthesis & Catalysis, 351(17), 2876-2886. doi:10.1002/adsc.200900491Arvai, R., Toulgoat, F., Langlois, B. R., Sanchez, J.-Y., & MĂ©debielle, M. (2009). A simple access to metallic or onium bistrifluoromethanesulfonimide salts. Tetrahedron, 65(27), 5361-5368. doi:10.1016/j.tet.2009.04.068Hashmi, A. S. K., Blanco, M. C., Fischer, D., & Bats, J. W. (2006). Gold Catalysis: Evidence for the In-situ Reduction of Gold(III) During the Cyclization of Allenyl Carbinols. European Journal of Organic Chemistry, 2006(6), 1387-1389. doi:10.1002/ejoc.200600009Morita, N., & Krause, N. (2006). Erste goldkatalysierte C-S-BindungsknĂŒpfung: Cycloisomerisierung von α-Thioallenen zu 2,5-Dihydrothiophenen. Angewandte Chemie, 118(12), 1930-1933. doi:10.1002/ange.200503846Morita, N., & Krause, N. (2006). The First Gold-Catalyzed CS Bond Formation: Cycloisomerization of α-Thioallenes to 2,5-Dihydrothiophenes. Angewandte Chemie International Edition, 45(12), 1897-1899. doi:10.1002/anie.200503846Santos, L. L., Ruiz, V. R., Sabater, M. J., & Corma, A. (2008). Regioselective transformation of alkynes into cyclic acetals and thioacetals with a gold(I) catalyst: comparison with BrĂžnsted acid catalysts. Tetrahedron, 64(34), 7902-7909. doi:10.1016/j.tet.2008.06.032Hashimoto, T., Kutubi, S., Izumi, T., Rahman, A., & Kitamura, T. (2011). Catalytic hydroarylation of alkynes with arenes in the presence of FeCl3 and AgOTf. Journal of Organometallic Chemistry, 696(1), 99-105. doi:10.1016/j.jorganchem.2010.08.009Corma, A., Ruiz, V. R., Leyva-PĂ©rez, A., & Sabater, M. J. (2010). Regio- and Stereoselective Intermolecular Hydroalkoxylation of Alkynes Catalysed by Cationic Gold(I) Complexes. Advanced Synthesis & Catalysis, 352(10), 1701-1710. doi:10.1002/adsc.201000094Hashmi, A. S. K., & Rudolph, M. (2008). Gold catalysis in total synthesis. Chemical Society Reviews, 37(9), 1766. doi:10.1039/b615629kLeyva-PĂ©rez, A., & Corma, A. (2011). Ăhnlichkeiten und Unterschiede innerhalb der «relativistischen» Triade Gold, Platin und Quecksilber in der Katalyse. Angewandte Chemie, 124(3), 636-658. doi:10.1002/ange.201101726Leyva-PĂ©rez, A., & Corma, A. (2011). Similarities and Differences between the «Relativistic» Triad Gold, Platinum, and Mercury in Catalysis. Angewandte Chemie International Edition, 51(3), 614-635. doi:10.1002/anie.20110172
- âŠ