258 research outputs found

    Probabilistic Cross-Identification of Astronomical Sources

    Full text link
    We present a general probabilistic formalism for cross-identifying astronomical point sources in multiple observations. Our Bayesian approach, symmetric in all observations, is the foundation of a unified framework for object matching, where not only spatial information, but physical properties, such as colors, redshift and luminosity, can also be considered in a natural way. We provide a practical recipe to implement an efficient recursive algorithm to evaluate the Bayes factor over a set of catalogs with known circular errors in positions. This new methodology is crucial for studies leveraging the synergy of today's multi-wavelength observations and to enter the time-domain science of the upcoming survey telescopes.Comment: Accepted for publication in the Astrophysical Journal, 8 pages, 1 figure, emulateapj w/ apjfont

    Nichtlineare Optimierung geometrisch definierter Fugen von räumlich gekrümmten Betonfertigteilen mit isogeometrischen Verfahren

    Get PDF
    Die Vision dieses Projektes ist es, einen durchgängigen Prozess zu entwickeln, der es erlaubt, den Entwurf, die Berechnung und die Fugenoptimierung von flächigen Strukturen aus Betonfertigteilen sehr einfach und effizient durchzuführen. Damit soll die Herstellung von freien Formen, wie beispielsweise „Blobs“ und Hängeformen aus Beton, unterstützt und gefördert werden.The vision of this project is to develop a continuous process that allows very easy and efficient design, calculation and joint optimization of surface-like structures made of precast concrete elements. This should support and encourage the production of free forms, such as “blobs” and hanging forms made of concrete

    Entwerfen, Berechnen und Optimieren von Betonschalen mit der isogeometrischen B-Rep-Analyse

    Get PDF
    Es wird ein neues Konzept vorgestellt, welches den Entwurf, die Berechnung und die Optimierung von Schalen aus Betonfertigbauteilen vereinfachen soll. Für das Konzept wird die neu entwickelte isogeometrische B-Rep-Analyse (IBRA) verwendet, welche für die Geometriebeschreibung ausschließlich Computer-Aided-Design-Parameter (CAD-Parameter) verwendet. Somit kann der gesamte Entwicklungsprozess der Schale, vom Entwurf bis zur Optimierung, in einem CAD-Programm durchgeführt werden

    Realization of CAD-integrated shell simulation based on isogeometric B-Rep analysis

    Get PDF
    An entire design-through-analysis workflow solution for isogeometric B-Rep analysis (IBRA), including both the interface to existing CADs and the analysis procedure, is presented. Possible approaches are elaborated for the full scope of structural analysis solvers ranging from low to high isogeometric simulation fidelity. This is based on a systematic investigation of solver designs suitable for IBRA. A theoretically ideal IBRA solver has all CAD capabilities and information accessible at any point, however, realistic scenarios typically do not allow this level of information. Even a classical FE solver can be included in the CAD-integrated workflow, which is achieved by a newly proposed meshless approach. This simple solution eases the implementation of the solver backend. The interface to the CAD is modularized by defining a database, which provides IO capabilities on the base of a standardized data exchange format. Such database is designed to store not only geometrical quantities but also all the numerical information needed to realize the computations. This feature allows its use also in codes which do not provide full isogeometric geometrical handling capabilities. The rough geometry information for computation is enhanced with the boundary topology information which implies trimming and coupling of NURBS-based entities. This direct use of multi-patch trimmed CAD geometries follows the principle of embedding objects into a background parametrization. Consequently, redefinition and meshing of geometry is avoided. Several examples from illustrative cases to industrial problems are provided to demonstrate the application of the proposed approach and to explain in detail the proposed exchange formats.Peer ReviewedPostprint (published version

    Synchronous motion of two vertically excited planar elastic pendula

    Get PDF
    The dynamics of two planar elastic pendula mounted on the horizontally excited platform have been studied. We give evidence that the pendula can exhibit synchronous oscillatory and rotation motion and show that stable in-phase and anti-phase synchronous states always co-exist. The complete bifurcational scenario leading from synchronous to asynchronous motion is shown. We argue that our results are robust as they exist in the wide range of the system parameters.Comment: Submitte

    An approximation of the ideal scintillation detector line shape with a generalized gamma distribution

    Full text link
    An approximation of the real line shape of a scintillation detector with a generalized gamma distribution is proposed. The approximation describes the ideal scintillation line shape better than the conventional normal distribution. Two parameters of the proposed function are uniquely defined by the first two moments of the detector response.Comment: 26 pages, 8 figures, 2 table

    Signal and Noise Analysis in TRION -Time-Resolved Integrative Optical Fast Neutron Detector

    Full text link
    TRION is a sub-mm spatial resolution fast neutron imaging detector, which employs an integrative optical time-of-flight technique. The detector was developed for fast neutron resonance radiography, a method capable of detecting a broad range of conventional and improvised explosives. In this study we have analyzed in detail, using Monte-Carlo calculations and experimentally determined parameters, all the processes that influence the signal and noise in the TRION detector. In contrast to event-counting detectors where the signal-to-noise ratio is dependent only on the number of detected events (quantum noise), in an energy-integrating detector additional factors, such as the fluctuations in imparted energy, number of photoelectrons, system gain and other factors will contribute to the noise. The excess noise factor (over the quantum noise) due to these processes was 4.3, 2.7, 2.1, 1.9 and 1.9 for incident neutron energies of 2, 4, 7.5, 10 and 14 MeV, respectively. It is shown that, even under ideal light collection conditions, a fast neutron detection system operating in an integrative mode cannot be quantum-noise-limited due to the relatively large variance in the imparted proton energy and the resulting scintillation light distributions.Comment: 18 page

    Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010

    Get PDF
    We studied the atmospheric boundary layer (ABL) dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics during the campaign. We propose a classification according to several main ABL prototypes. Further, we performed a case study of a single day, focusing on the convective boundary layer, to analyse the influence of the dynamics on the chemical evolution of the ABL. We used a mixed layer model, initialized and constrained by observations. In particular, we investigated the role of large scale atmospheric dynamics (subsidence and advection) on the ABL development and the evolution of chemical species concentrations. We find that, if the large scale forcings are taken into account, the ABL dynamics are represented satisfactorily. Subsequently, we studied the impact of mixing with a residual layer aloft during the morning transition on atmospheric chemistry. The time evolution of NOx and O3 concentrations, including morning peaks, can be explained and accurately simulated by incorporating the transition of the ABL dynamics from night to day. We demonstrate the importance of the ABL height evolution for the representation of atmospheric chemistry. Our findings underscore the need to couple the dynamics and chemistry at different spatial scales (from turbulence to mesoscale) in chemistry-transport models and in the interpretation of observational data
    corecore