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The time–frequency analysis of a signal is often performed via a series expansion
arising from well-localized building blocks. Typically, the building blocks are based on
frames having either Gabor or wavelet structure. In order to calculate the coefficients
in the series expansion, a dual frame is needed. The purpose of the present paper is
to provide constructions of dual pairs of frames in the setting of the Hilbert space of
periodic functions L2(0,2π). The frames constructed are given explicitly as trigonometric
polynomials, which allows for an efficient calculation of the coefficients in the series
expansions. The generality of the setup covers periodic frames of various types, including
nonstationary wavelet systems, Gabor systems and certain hybrids of them.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Time–frequency representations play a fundamental role in many practical applications as they provide localized infor-
mation of signals in time and frequency domains. Series representations in terms of frames capture such information at
prescribed discrete points in the time–frequency plane. Gabor frames and wavelet frames are leading examples of frames
from the perspective of time–frequency analysis, and both of them have their respective strengths, see for instance [3,7–9,
15,20]. Technically, the series expansion provided by a frame requires knowledge of a dual frame, either for the synthesis or
the analysis of the given signal. Therefore simultaneous constructions of a frame and a corresponding dual with desirable
properties is a key issue. In addition, many signals of practical interest can be considered as periodic. Apart from signals
that are inherently periodic, all signals resulting from experiments with a finite duration can in principle be modeled as
periodic signals, see for example [18]. This motivates the current paper on periodic frames.

The purpose of this paper is to construct explicitly given frames and dual pairs of frames in L2(0,2π), the Hilbert
space of 2π -periodic functions on R that are square-integrable over (0,2π). The frames will be given as a collection of
translates of a set of functions. Under suitable conditions we will also derive explicit expressions for associated dual frames.
As concrete examples, we obtain frame constructions of Gabor type and wavelet type, as well as a certain hybrid of these.
The practical relevance of the results is explained in the context of signal processing. More details on the premise of the
paper will appear later in the introduction.

An outline of the paper is as follows. In the rest of this introduction we present a few basic definitions and facts
about frames. We also give an example that motivates the theoretical results to follow. Then, in Section 2 we present
sufficient conditions for a sequence of translates of a collection of functions in L2(0,2π) to be a Bessel sequence or a
frame. In Section 3 we demonstrate how to explicitly construct dual pairs of frames. These dual pairs are frames comprised
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of trigonometric polynomials, which facilitate efficient analysis of periodic functions. The theoretical results are followed
by various concrete examples, dealing with, e.g., Gabor analysis, stationary as well as nonstationary wavelet analysis, and
various hybrids of these. The generating functions of these trigonometric polynomial frames have desirable properties such
as being real-valued and symmetric, and possessing good time–frequency localization.

We now describe the setting of our study. Let I denote a subset of the integers Z, let {Lk}k∈I be any countable sequence
of positive integers, and define associated translation operators Tk acting on L2(0,2π) by

Tk f (x) := f

(
x − 2π

Lk

)
. (1.1)

Note that composing Tk with itself leads to

T �
k f (x) = f

(
x − 2π�

Lk

)
, � ∈ Z, (1.2)

and so, T Lk
k f (x) = f (x − 2π) = f (x), i.e., T Lk

k equals the identity operator. For each k ∈ I we will apply the operators T �
k to a

function ψk in L2(0,2π); thus, we consider the collection of functions {T �
k ψk}k∈I,�=0,...,Lk−1, where the index set is chosen

to avoid repetitions. Note that this general setup allows us to apply different shifts to the involved functions ψk .
Our purpose is to consider frame properties for a collection of functions of the form {T �

k ψk}k∈I,�=0,...,Lk−1 in L2(0,2π),
so we will briefly recall a few standard results and facts about frames. We say that the collection {T �

k ψk}k∈I,�=0,...,Lk−1 in
L2(0,2π) forms a frame for L2(0,2π) if there exist positive constants A, B such that

A‖ f ‖2 �
∑
k∈I

Lk−1∑
�=0

∣∣〈 f , T �
k ψk

〉∣∣2 � B‖ f ‖2, f ∈ L2(0,2π). (1.3)

The constants A, B are called bounds of the frame. If at least the second inequality in (1.3) holds, then {T �
k ψk}k∈I,�=0,...,Lk−1

is said to be a Bessel sequence and B its bound. Two collections {T �
k ψk}k∈I,�=0,...,Lk−1 and {T �

k ψ̃k}k∈I,�=0,...,Lk−1 in L2(0,2π)

form a pair of dual frames if both collections are Bessel sequences and

f =
∑
k∈I

Lk−1∑
�=0

〈
f , T �

k ψk
〉
T �

k ψ̃k, f ∈ L2(0,2π). (1.4)

It is well known that if {T �
k ψk}k∈I,�=0,...,Lk−1 and {T �

k ψ̃k}k∈I,�=0,...,Lk−1 are dual frames, the roles of {T �
k ψk}k∈I,�=0,...,Lk−1 and

{T �
k ψ̃k}k∈I,�=0,...,Lk−1 can be interchanged in the analysis and synthesis of f .
The setup in the form of {T �

k ψk}k∈I,�=0,...,Lk−1 encompasses periodic frames of various types. Different choices of {Lk}k∈I ,
giving translation operators Tk of different shifts as defined in (1.1), determine the frame systems on hand. In particular,
if I = Z, Lk = D for some positive integer D and ψk = eik·ψ0, then Tk = T0 for all k, and by (1.2), {T �

k ψk}k∈Z,�=0,...,D−1

can be written as {e−2π ik�/Deik·T �
k ψ0}k∈Z,�=0,...,D−1 which is a Gabor system generated by ψ0, up to the constant factors

e−2π ik�/D . On the other hand, if I = N ∪ {0} and Lk = Dk for some integer D � 2, then Tk amounts to shifting by 2π
Dk and

{T �
k ψk}k�0,�=0,...,Dk−1 is a nonstationary wavelet system.
Let us motivate the constructions to follow from the perspective of signal processing. Here, and in the rest of the paper,

the Fourier coefficients for a function f ∈ L2(0,2π) are denoted by

f̂ (n) := 1

2π

2π∫
0

f (x)e−inx dx, n ∈ Z.

Let {T �
k ψk}k∈I,�=0,...,Lk−1 and {T �

k ψ̃k}k∈I,�=0,...,Lk−1 be a pair of trigonometric polynomial dual frames, and f ∈ L2(0,2π) a
signal to be analyzed and synthesized. Using the frame {T �

k ψk}k∈I,�=0,...,Lk−1 for the analysis of f , as in (1.4), we compute
the frame coefficient〈

f , T �
k ψk

〉=∑
n∈Z

f̂ (n)T̂ �
k ψk(n) =

∑
n∈Z

f̂ (n)ψ̂k(n)e2π in�/Lk (1.5)

for k ∈ I , � = 0, . . . , Lk − 1. This can be evaluated efficiently as each T �
k ψk is a trigonometric polynomial and so (1.5) is a

finite sum. When explicit expressions for ψ̃k , k ∈ I , are available (which is the case in this paper), the signal f can be readily
recovered from the reconstruction formula (1.4).

While the frame coefficients 〈 f , T �
k ψk〉, k ∈ I , � = 0, . . . , Lk − 1, can be evaluated efficiently, one also needs to address

whether they provide an effective time–frequency analysis of f . The following example highlights some of the issues in-
volved in this.
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Example 1.1. Let H be a function in L2(0,2π) which is well localized in time (for instance, a Dirichlet kernel or a Fejér
kernel), and consider the signal f ∈ L2(0,2π) defined by

f (x) := cos(n1x)H(x − x1) + cos(n1x)H(x − x2) + cos(n2x)H(x − x1) + cos(n2x)H(x − x2) (1.6)

for some distinct n1,n2 ∈N∪ {0} and x1, x2 ∈ [0,2π). The signal f comprises four components of the form

frs(x) = cos(nr x)H(x − xs),

a function that is localized in frequency around n = ±nr and localized in time around x = xs . A trigonometric polynomial
frame {T �

k ψk}k∈I,�=0,...,Lk−1 would resolve the components of f if for each component frs of f , we can find a frame element
T �

k ψk that returns a large value of |〈 frs, T �
k ψk〉|, while giving relatively small values for the other components.

In (1.6), if n1 and n2 as well as x1 and x2 are sufficiently far apart, then the analysis of f provided by (1.5) would
successfully resolve the different components of f when ψ̂k and ψk are translated by appropriate constant amounts in
frequency and time domains respectively. This is the typical setup of Gabor analysis, see Example 3.1.

If n1 and n2 are large values, then f is a high frequency signal which has rapid changes in time. In this case, for the
analysis (1.5), it is natural to employ a finer shift T �

k ψk given by a larger value of Lk . On the other hand, if n1 and n2 are
small values, then f is a low frequency signal, and it suffices to take a smaller value of Lk amounting to a coarser shift
T �

k ψk . This is precisely the flexibility provided by wavelet analysis where Lk = Dk for some integer D � 2, see Example 3.2.
In the typical wavelet setup, the length of the support of ψ̂k often grows rapidly in multiples of Dk as k increases. So

when n1 and n2 are large values but near to each other, they may both end up in the same support of ψ̂k for some large
value of k. This can be avoided if the support of ψ̂k expands at a less rapid rate as k increases. On the other hand, when
x1 and x2 in (1.6) are close to each other, we should utilize a fine shift T �

k ψk , given by a large value of Lk , to resolve the
components localized at these points in time. The balancing of these desirable features is incorporated into the construction
of Example 3.3, which attempts to combine the strengths of Gabor analysis and wavelet analysis.

Previous work on periodic frames in the literature includes [13,14] in which periodic wavelet frames are obtained from
multiresolution analyses, and [5] where pairs of oblique duals are constructed for finite-dimensional spaces of periodic
functions. On the other hand, for the space L2(R), explicit pairs of dual Gabor frames are constructed in [4,6] (with cor-
responding results for dual wavelet frames reported in [19]) and [16,17]. Here we focus on the space L2(0,2π), and we
adapt, unify and further develop these ideas to construct pairs of trigonometric polynomial frames. Some of our extensions
are made possible only by the periodic setting on hand, i.e., corresponding results for L2(R) are not available.

In contrast to [4,19], our approach is based on a general nonstationary setup where different values of k may correspond
to rather different functions ψk and parameters Lk . It also does not assume the multiresolution analysis framework in [13,
14], which typically takes Lk = Dk for some integer D � 2.

2. Bessel sequences and frames of the form {T �
kψk}k∈I,�=0,...,Lk−1

We first present a general sufficient condition for a system of functions of the form {T �
k ψk}k∈I,�=0,...,Lk−1 to be a Bessel

sequence or form a frame for L2(0,2π). Similar results are known for Gabor systems and wavelet systems in L2(R) (see
[2,3]). While our proof adapts appropriately the main ideas in establishing [3, Theorem 11.2.3] on wavelet frames for L2(R)

to the space L2(0,2π), the nonstationary setting on hand gives a general result that is applicable to periodic Gabor systems,
periodic wavelet systems, as well as other periodic systems of interest. This proof is provided in Appendix A.

Theorem 2.1. Consider functions {ψk}k∈I ⊂ L2(0,2π), let {Lk}k∈I be a sequence of positive integers, and assume that

B := sup
n∈Z

∑
k∈I

Lk

∑
q∈Z

∣∣ψ̂k(n)ψ̂k(n + Lkq)
∣∣< ∞. (2.1)

Then {T �
k ψk}k∈I,�=0,...,Lk−1 is a Bessel sequence with bound B. If in addition,

A := inf
n∈Z

(∑
k∈I

Lk
∣∣ψ̂k(n)

∣∣2 −
∑

q∈Z\{0}

∑
k∈I

Lk
∣∣ψ̂k(n)ψ̂k(n + Lkq)

∣∣)> 0, (2.2)

then {T �
k ψk}k∈I,�=0,...,Lk−1 is a frame for L2(0,2π) with bounds A, B.

For Lk = Dk for some integer D � 2, another sufficient condition for {T �
k ψk}k�0,�=0,...,Dk−1 to be a Bessel sequence can

be found in [12, Theorem 4.1].
While Theorem 2.1 provides a condition for {T �

k ψk}k∈I,�=0,...,Lk−1 to form a frame for L2(0,2π), it does not contain
information about how an appropriate dual frame can be obtained. In the next section we will construct pairs of dual
frames explicitly, and in that context the Bessel condition will play an important role. For this reason we now state some
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easily accessible conditions, based on Theorem 2.1, for {T �
k ψk}k∈I,�=0,...Lk−1 to be a Bessel sequence. Here, and in the rest of

the paper, we put

Sk := supp ψ̂k, (2.3)

i.e., Sk is the set of all n ∈ Z for which ψ̂k(n) 
= 0. We will subsequently assume that ψk is a trigonometric polynomial,
meaning that Sk is a finite set.

Corollary 2.1. Consider functions {ψk}k∈I ⊂ L2(0,2π) and a sequence {Lk}k∈I of positive integers, and assume the following:

(i) For each k ∈ I , the set Sk is contained in an interval of length strictly less than J Lk for some J ∈N;
(ii) There exists a constant C > 0 such that∣∣ψ̂k(n)

∣∣� C√
Lk

, k ∈ I, n ∈ Z;

(iii) There exists a number K ∈ N such that each n ∈ Z belongs to at most K of the sets Sk.

Then {T �
k ψk}k∈I,�=0,...,Lk−1 is a Bessel sequence with bound K C2(2 J − 1).

Proof. Fix n ∈ Z. Assume that n ∈ Sk for k ∈ {k1,k2, . . . ,kμ}, where k1, . . . ,kμ ∈ I; by assumption μ � K . Then

∑
k∈I

Lk

∑
q∈Z

∣∣ψ̂k(n)ψ̂k(n + Lkq)
∣∣= ∑

k∈{k1,...,kμ}

J−1∑
q=− J+1

(√
Lk
∣∣ψ̂k(n)

∣∣)(√Lk
∣∣ψ̂k(n + Lkq)

∣∣)
� K (2 J − 1)

(
sup

k∈I,n∈Z

√
Lk
∣∣ψ̂k(n)

∣∣)2

� K C2(2 J − 1).

The result now follows from Theorem 2.1. �
We will now use Corollary 2.1 to check the Bessel condition for some special classes of functions. In Section 3 we return

to these examples and construct dual pairs of frames. Our first example leads to a system of functions with Gabor structure.

Example 2.1. Let g be a nontrivial, bounded, and real-valued function on R with support in an interval [M, N] for some
M, N ∈ Z, M < N . For the sequence {Lk}k∈I in Corollary 2.1, take I = Z and Lk = D for some positive integer D . We define a
family of trigonometric polynomials

ψk(x) =
∑
n∈Z

ψ̂k(n)einx, k ∈ Z, (2.4)

by

ψ̂k(n) := g(n − k)√
D

, n ∈ Z. (2.5)

Then for k ∈ Z, � = 0, . . . , D − 1, using (1.2), (2.4) and (2.5), a calculation gives

T �
k ψk(x) = e−2π ik�/Deikxψ0

(
x − 2π�

D

)
= e−2π ik�/DeikxT �

k ψ0(x). (2.6)

Thus, up to the constant factors e−2π ik�/D , we are dealing with a Gabor system generated by the function ψ0.
Checking the conditions of Corollary 2.1, we see that (i) clearly holds because by (2.5), the set Sk is contained in an

interval of length N − M which is independent of k. Since g is bounded and Lk = D , (ii) is also satisfied. Finally, it follows
from (2.5) that (iii) holds with K = N − M + 1. Hence, by Corollary 2.1, {T �

k ψk}k∈Z,�=0,...,D−1 is a Bessel sequence.

In Example 2.1 which leads to Gabor frames, the size of the support of ψ̂k is independent of k. The next example shows
how to construct Bessel sequences consisting of trigonometric polynomials such that the support of ψ̂k grows exponentially
with k, which sets the scene for wavelet frames.
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Example 2.2. Let g be a nontrivial, bounded, and real-valued function on R with support in an interval [M, N] for some
M, N ∈ R, M < N . Let I = N∪ {0}, and consider the sequence {Lk}k�0 given by Lk = Dk for some integer D � 2. Choose any
integer k0 > 0 and define a family of trigonometric polynomials

ψk(x) =
∑
n∈Z

ψ̂k(n)einx, k = 0,1, . . . , (2.7)

by

ψ̂k(0) := 1√
Dk

δk,k0 ,

and, for n 
= 0,

ψ̂k(n) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if k = 0, . . . ,k0 − 1,

g(logD (|n|))√
Dk

, if k = k0,

g(logD (
|n|

D−k+k0
))+g(logD (

|n|
Dk−k0

))
√

Dk
, if k > k0.

(2.8)

Then the functions ψ̂k are real-valued and symmetric on Z; and this gives generators ψk that are real-valued and symmetric.
In order to check condition (i) in Corollary 2.1, it is clearly enough to consider k > k0. Then it is only possible that

ψ̂k(n) 
= 0 if

M � logD

( |n|
D−k+k0

)
� N or M � logD

( |n|
Dk−k0

)
� N, (2.9)

i.e., if

DM−k+k0 � |n| � DN−k+k0 or DM+k−k0 � |n| � DN+k−k0 . (2.10)

Thus the support of ψ̂k is contained in an interval of length DN+k−k0 − (−DN+k−k0 ) = 2DN−k0 Dk which is strictly less than
J Dk with J = 2DN−k0 + 1. The condition (ii) in Corollary 2.1 is trivially satisfied.

On the other hand, given any n ∈ Z\{0} it follows from (2.9) that it is only possible that ψ̂k(n) 
= 0 if

M � logD

(|n|)− (−k + k0) � N or M � logD

(|n|)− (k − k0) � N.

This holds for at most N − M + 1 values of k, so condition (iii) in Corollary 2.1 is satisfied. Thus {T �
k ψk}k�0,�=0,...,Dk−1 is a

Bessel sequence.

In our third example, supp ψ̂k is the union of two disjoint sets of constant cardinality that move farther apart as k
increases. This provides the setup for constructing pairs of dual trigonometric frames which are hybrids of Gabor and
wavelet systems.

Example 2.3. Let g be a nontrivial, bounded, and real-valued function on R with support in an interval [M, N] for some
M, N ∈ Z, M < N . With the index set I = N ∪ {0}, let {Lk}k�0 be a sequence of positive integers. We now fix some integer
k0 > 0 and define a family of trigonometric polynomials ψk , k = 0,1, . . . , of the form (2.7) by

ψ̂k(n) :=

⎧⎪⎪⎨⎪⎪⎩
0, if k = 0, . . . ,k0 − 1,

g(n)√
Lk

, if k = k0,

g(n−k+k0)+g(n+k−k0)√
Lk

, if k > k0,

(2.11)

for n ∈ Z.
The assumption (iii) in Corollary 2.1 is satisfied with K = N − M + 1. Due to the assumption that g is bounded, we can

choose a constant C > 0 such that |g(x)| � C for all x ∈ R; by the choice of ψ̂k(n) in (2.11) this implies that∣∣√Lkψ̂k(n)
∣∣� 2C, k � 0, n ∈ Z,

i.e., condition (ii) in Corollary 2.1 is satisfied. Finally, note that if only one of the terms g(n − k + k0) and g(n + k − k0)

appeared in (2.11) for k > k0, then the set Sk would be contained in a translate of the interval [M, N] of length N − M
which is strictly less than J Lk with J = N − M + 1. Thus, by Corollary 2.1 we can conclude that if ψk is modified to just
contain one of these terms for k > k0, then we have a Bessel sequence. This means that the sequence {T �

k ψk}k�0,�=0,...,Lk−1
generated by our ψk as defined in (2.11) can be considered as a sum of two Bessel sequences, and therefore it is a Bessel
sequence itself.



320 O. Christensen, S.S. Goh / Appl. Comput. Harmon. Anal. 33 (2012) 315–329

3. Dual pairs of trigonometric polynomial frames

The purpose of this section is to provide a construction of pairs of dual trigonometric polynomial frames
{T �

k ψk}k∈I,�=0,...,Lk−1, {T �
k ψ̃k}k∈I,�=0,...,Lk−1 for L2(0,2π). The approach is very general and it can be tailored to give, among

others, periodic Gabor frames and periodic wavelet frames. In the entire section, we will assume that the index set I is
either I = N∪ {0} or I = Z. As in (2.3), we let Sk denote the support of ψ̂k .

Theorem 3.1. Let {ψk}k∈I be a collection of trigonometric polynomials with real-valued Fourier coefficients, and consider any sequence
{Lk}k∈I of positive integers. Assume that the following conditions are satisfied:

(i) There exists a constant P ∈ N such that Sk ∩ Sk+ν = ∅ for ν � P and all k ∈ I;
(ii) The collection {T �

k ψk}k∈I,�=0,...,Lk−1 forms a Bessel sequence;
(iii) For any n ∈ Z,

1 =
∑
k∈I

√
Lkψ̂k(n);

(iv) For any k ∈ I ,

ρk := max

{
|n − m|

∣∣∣ n ∈ Sk, m ∈
P−1⋃
ν=0

Sk+ν

}
< Lk.

For k ∈ I , let ψ̃k be defined by

̂̃ψk(n) := ψ̂k(n) + 2√
Lk

P−1∑
ν=1

√
Lk+νψ̂k+ν(n), n ∈ Z. (3.1)

If {T �
k ψ̃k}k∈I,�=0,...,Lk−1 is also a Bessel sequence, then the functions {T �

k ψk}k∈I,�=0,...,Lk−1 and {T �
k ψ̃k}k∈I,�=0,...,Lk−1 form a pair of

dual frames for L2(0,2π).

Proof. Fix n ∈ Z. It follows from assumption (i) that n ∈ Sk can only hold for finitely many k ∈ I . Choose kn as the smallest
integer such that n ∈ Skn ; then, if n ∈ Sk for some k, we have

k ∈ {kn,kn + 1, . . . ,kn + P − 1}.
Using (iii), a standard but rather involved argument via induction on P shows that

1 =
(

kn+P−1∑
k=kn

√
Lkψ̂k(n)

)2

= Lkn ψ̂kn(n)

[
ψ̂kn(n) + 2

√
Lkn+1√
Lkn

ψ̂kn+1(n) + · · · + 2
√

Lkn+P−1√
Lkn

̂ψkn+P−1(n)

]
+ Lkn+1ψ̂kn+1(n)

[
ψ̂kn+1(n) + 2

√
Lkn+2√

Lkn+1
ψ̂kn+2(n) + · · · + 2

√
Lkn+P−1√
Lkn+1

̂ψkn+P−1(n)

]
+ · · · + Lkn+P−1 ̂ψkn+P−1(n)

[
̂ψkn+P−1(n)

]
.

Collecting the terms via finite sums and adding zeros leads to

1 = Lkn ψ̂kn(n)

[
ψ̂kn(n) + 2√

Lkn

P−1∑
ν=1

√
Lkn+νψ̂kn+ν(n)

]

+ Lkn+1ψ̂kn+1(n)

[
ψ̂kn+1(n) + 2√

Lkn+1

P−1∑
ν=1

√
Lkn+1+νψ̂kn+1+ν(n)

]
+ · · ·

+ Lkn+P−1 ̂ψkn+P−1(n)

[
̂ψkn+P−1(n) + 2√

Lkn+P−1

P−1∑
ν=1

√
Lkn+P−1+ν ̂ψkn+P−1+ν(n)

]
.

For any k ∈ I , ̂̃ψk(n) is defined by (3.1); using that ψ̂k(n) = 0 for k /∈ {kn, . . . ,kn + P − 1}, the above calculation shows that
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1 =
kn+P−1∑

k=kn

Lkψ̂k(n)̂̃ψk(n) =
∑
k∈I

Lkψ̂k(n)̂̃ψk(n). (3.2)

Employing the notation in (A.2) and (A.3) in the proof of Theorem 2.1 and a similar one with 〈h, T �
k ψ̃k〉 =∑Lk−1

r=0 β̂k(r)e2π ir�/Lk , we have that for all trigonometric polynomials f ,h,

Lk−1∑
�=0

〈
f , T �

k ψk
〉〈

h, T �
k ψ̃k

〉= Lk−1∑
�=0

Lk−1∑
j=0

α̂k( j)e2π i j�/Lk

Lk−1∑
r=0

β̂k(r)e−2π ir�/Lk

=
Lk−1∑
j=0

Lk−1∑
r=0

α̂k( j)β̂k(r)
Lk−1∑
�=0

e2π i( j−r)�/Lk = Lk

Lk−1∑
j=0

α̂k( j)β̂k( j).

Then applying (A.3) gives

Lk−1∑
�=0

〈
f , T �

k ψk
〉〈

h, T �
k ψ̃k

〉= Lk

Lk−1∑
j=0

(∑
p∈Z

f̂ ( j + Lk p)ψ̂k( j + Lk p)

)(∑
q∈Z

ĥ( j + Lkq)̂̃ψk( j + Lkq)

)

= Lk

Lk−1∑
j=0

∑
p∈Z

f̂ ( j + Lk p)ψ̂k( j + Lk p)
∑
q∈Z

ĥ( j + Lk p + Lkq)̂̃ψk( j + Lk p + Lkq)

= Lk

∑
n∈Z

f̂ (n)ψ̂k(n)
∑
q∈Z

ĥ(n + Lkq)̂̃ψk(n + Lkq)

= Lk

∑
n∈Z

[
f̂ (n)ψ̂k(n)̂h(n)̂̃ψk(n) +

∑
q∈Z\{0}

f̂ (n)ψ̂k(n)̂h(n + Lkq)̂̃ψk(n + Lkq)

]
. (3.3)

In this expression the second term
∑

q∈Z\{0} f̂ (n)ψ̂k(n)̂h(n + Lkq)̂̃ψk(n + Lkq) actually vanishes for all k ∈ I . If n /∈ Sk this is
trivial; and if n ∈ Sk , then for any q ∈ Z \ {0} we have |n − (n + Lkq)| = Lk|q| � Lk , which by assumption (iv) implies that
n + Lkq /∈⋃P−1

ν=0 Sk+ν and thus n + Lkq /∈ supp̂̃ψk .
Hence, considering the sum over k ∈ I of the terms in (3.3) and using (3.2), we arrive at

∑
k∈I

Lk−1∑
�=0

〈
f , T �

k ψk
〉〈

h, T �
k ψ̃k

〉=∑
k∈I

Lk

∑
n∈Z

f̂ (n)ψ̂k(n)̂h(n)̂̃ψk(n) =
∑
n∈Z

f̂ (n)̂h(n) = 〈 f ,h〉.

From here, since both the collections {T �
k ψk}k∈I,�=0,...,Lk−1 and {T �

k ψ̃k}k∈I,�=0,...,Lk−1 are Bessel sequences, a standard duality
argument implies that they form a pair of dual frames for L2(0,2π). �

Note that in order to apply Theorem 3.1, we need to check the assumptions (i) to (iv) as well as that the functions
{T �

k ψ̃k}k∈I,�=0,...,Lk−1 form a Bessel sequence. In the following corollaries, we provide several ways of satisfying this, either
in terms of conditions on the sequence {Lk}k∈I or by appropriate conditions that imply (i) to (iv) and the Bessel condition
simultaneously.

Corollary 3.1. In the special case where Lk = D for some positive integer D, the assumptions (i) to (iv) in Theorem 3.1 produce a dual
frame {T �

k ψ̃k}k∈I,�=0,...,D−1 from the functions ψ̃k defined by

̂̃ψk(n) := ψ̂k(n) + 2
P−1∑
ν=1

ψ̂k+ν(n), n ∈ Z. (3.4)

Proof. Note that, as a finite linear combination of Bessel sequences, {T �
k ψ̃k}k∈I,�=0,...,D−1 is a Bessel sequence. Thus the

result follows from Theorem 3.1. �
Corollary 3.2. In the special case where I = N ∪ {0} and Lk = Dk for some integer D � 2, the assumptions (i) to (iv) in Theorem 3.1
yield a dual frame {T �

k ψ̃k}k�0,�=0,...,Dk−1 generated by the functions ψ̃k given by

̂̃ψk(n) := ψ̂k(n) + 2
P−1∑
ν=1

√
Dνψ̂k+ν(n), n ∈ Z. (3.5)
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Proof. For ν = 1, . . . , P − 1, observe that {T �
k ψk+ν}k�0,�=0,...,Dk−1 is a Bessel sequence. This is because

∞∑
k=0

Dk−1∑
�=0

∣∣〈 f , T �
k ψk+ν

〉∣∣2 =
∞∑

k=0

Dk−1∑
�=0

∣∣〈 f , T �Dν

k+νψk+ν

〉∣∣2
�

∞∑
k=0

Dk+ν−1∑
l=0

∣∣〈 f , T l
k+νψk+ν

〉∣∣2 =
∞∑

κ=ν

Dκ−1∑
l=0

∣∣〈 f , T l
κψκ

〉∣∣2
�

∞∑
κ=0

Dκ−1∑
l=0

∣∣〈 f , T l
κψκ

〉∣∣2,
and {T �

k ψk}k�0,�=0,...,Dk−1 is a Bessel sequence. The rest of the proof is the same as in the proof of Corollary 3.1. �
Corollaries 3.1 and 3.2 deal with special values of Lk . For the general case, our strategy is first to construct ψk that satisfy

the assumptions in Corollary 2.1 and then consider the extra assumptions in Theorem 3.1. As observed in the following
corollary, for general values of Lk , it is possible to impose a stronger condition in one of these assumptions and hereby
ensure that {T �

k ψ̃k}k∈I,�=0,...,Lk−1 automatically is a Bessel sequence.

Corollary 3.3. With {ψk}k∈I and {Lk}k∈I as in Theorem 3.1, suppose that the assumptions (ii) and (iii) in Corollary 2.1 and (i) and (iii)
in Theorem 3.1 hold. In addition, assume that for any k ∈ I ,

σk := max

{
|n − m|

∣∣∣ n,m ∈
P−1⋃
ν=0

Sk+ν

}
< Lk. (3.6)

For ψ̃k defined by (3.1), the collections {T �
k ψk}k∈I,�=0,...,Lk−1 and {T �

k ψ̃k}k∈I,�=0,...,Lk−1 form a pair of dual frames for L2(0,2π).

Proof. Note that the assumption (3.6) implies condition (i) in Corollary 2.1 as well as condition (iv) in Theorem 3.1. Then
by Corollary 2.1, {T �

k ψk}k∈I,�=0,...,Lk−1 is a Bessel sequence. The result will follow from Theorem 3.1 once we establish that
{T �

k ψ̃k}k∈I,�=0,...,Lk−1 is also a Bessel sequence.

To this end, we apply Corollary 2.1 to the functions {ψ̃k}k∈I . Indeed, for k ∈ I , we define S̃k := supp̂̃ψk . Then (3.1) implies
that S̃k ⊆ ⋃P−1

ν=0 Sk+ν , and by (3.6), S̃k is contained in an interval of length strictly less than Lk . Using condition (ii) in
Corollary 2.1, we obtain from (3.1) that

∣∣̂̃ψk(n)
∣∣� ∣∣ψ̂k(n)

∣∣+ 2√
Lk

P−1∑
ν=1

√
Lk+ν

∣∣ψ̂k+ν(n)
∣∣� (2P − 1)C√

Lk
, n ∈ Z.

Now, for a fixed n ∈ Z, condition (iii) in Corollary 2.1 implies that n ∈ Sk only for k ∈ {k1,k2, . . . ,kμ}, where k1, . . . ,kμ ∈ I

and μ � K . Take any k ∈ {k1, . . . ,kμ}. By (i) in Theorem 3.1, Sk ∩⋃P−1
ν=0 Sκ+ν = ∅ for κ � k + P or κ � k − 2P + 1. Thus Sk

intersects at most (k + P − 1) − (k − 2P + 2) + 1 = 3P − 2 sets of the form
⋃P−1

ν=0 Sκ+ν . Since S̃κ ⊆⋃P−1
ν=0 Sκ+ν , it follows

that Sk intersects at most 3P − 2 of the sets S̃κ . This in turn shows that n lies in at most K (3P − 2) of the sets S̃κ as
μ � K . Hence we conclude from Corollary 2.1 that {T �

k ψ̃k}k∈I,�=0,...,Lk−1 is a Bessel sequence. �
With these results in place, we are ready to construct various general classes of dual pairs of trigonometric polynomial

frames. As the following examples will demonstrate, a key issue turns out to be various partition of unity conditions.

Example 3.1. We continue the analysis of the setup in Example 2.1 with some minor adjustments in order to adapt to the
assumptions of Theorem 3.1. First, we further assume that

∑
k∈Z g(k) = 1. This can always be achieved by multiplying g

with a nonzero constant, provided that
∑

k∈Z g(k) 
= 0. Note that this assumption implies that∑
k∈Z

g(x − k) = 1, x ∈ Z. (3.7)

Second, we also assume that the number D and the length of the interval [M, N] are related by

D > 2(N − M). (3.8)

Checking conditions (i) to (iv) in Theorem 3.1, we note that for k ∈ Z and ν � 1, Sk ⊆ {M + k, . . . , N + k} and Sk+ν ⊆
{M + k + ν, . . . , N + k + ν}. Then Sk ∩ Sk+ν = ∅ if N + k < M + k + ν , i.e., if ν > N − M . So (i) holds with P = N − M + 1.
Condition (ii) has already been established in Example 2.1.
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Using (2.5) and (3.7), for every n ∈ Z,∑
k∈Z

√
Dψ̂k(n) =

∑
k∈Z

g(n − k) = 1,

which is condition (iii). In view of
⋃P−1

ν=0 Sk+ν ⊆ {M + k, . . . , N + k + P − 1}, we see that ρk in (iv) satisfies

ρk � (N + k + P − 1) − (M + k) = 2(N − M) < D,

where (3.8) gives the final inequality.
Hence, we may apply Corollary 3.1 to construct a pair of dual periodic Gabor frames. In particular, for ψ̃k defined from

its Fourier coefficients ̂̃ψk as in (2.4), it follows from a calculation via (3.4) and (2.5) that

ψ̃k(x) = eikx
∑
n∈Z

1√
D

(
g(n) + 2

N−M∑
ν=1

g(n − ν)

)
einx = eikxψ̃0(x).

So for k ∈ Z, � = 0, . . . , D − 1, using (1.2),

T �
k ψ̃k(x) = e−2π ik�/Deikxψ̃0

(
x − 2π�

D

)
= e−2π ik�/DeikxT �

k ψ̃0(x), (3.9)

which also has the Gabor structure. As (2.6) and (3.9) have the same constant factors e−2π ik�/D , the frame expansion (1.4)
reduces to the Gabor expansion

f =
∑
k∈Z

D−1∑
�=0

〈
f , eik·T �

k ψ0
〉
eik·T �

k ψ̃0, f ∈ L2(0,2π).

Note that our construction of dual Gabor frames for L2(0,2π) in Example 3.1 originates from the frequency domain,
while the approach for Gabor systems in L2(R) in [4] takes place in the time domain. As the frequency domain for L2(0,2π)

is the integers Z, we only require condition (3.7), which, as we have discussed, can be satisfied after a simple modification
of the function g . On the other hand, the construction for L2(R) requires a partition of unity over the real line R that is
more complicated to satisfy.

Next, we use Corollary 3.2 to construct pairs of dual periodic wavelet frames.

Example 3.2. We continue the analysis of the functions ψk in Example 2.2, with the extra assumption that g satisfies the
partition of unity condition∑

k∈Z
g(x − k) = 1, x ∈R.

We will also assume that k0 is a positive integer satisfying

k0 > N + logD

(
DN−M + 1

)
. (3.10)

(The reason for this choice of k0 will be revealed later in the example.) Note that in contrast to the situation in Example 3.1,
see (3.7), we now need the partition of unity to hold for all x ∈ R. This is more restrictive, but it is satisfied, e.g., for any
B-spline or any scaling function. We will verify conditions (i) to (iv) in Theorem 3.1 and then apply Corollary 3.2. First
note that (2.10) shows that ψ̂k might consist of two “bumps” on the positive axis and two bumps on the negative axis. If
N − k + k0 < 0, i.e., if k > N + k0, there will be only one bump on each of the positive axis and the negative axis.

We now check condition (i) in Theorem 3.1. To this end, let �·� denote the floor function, and let P = �N − M + 1�. If
k > k0, then for ν � P > N − M , we have DN−(k+ν)+k0 < DM−k+k0 and DN+k−k0 < DM+(k+ν)−k0 . Applying both (2.10) directly
as well as (2.10) with k + ν in place of k, we see that Sk ∩ Sk+ν = ∅. In addition, by (2.8), ψ̂k0(n) 
= 0 only if DM � |n| � DN .
For ν � P > N − M , we have DN−ν < DM and DN < DM+ν , which show that Sk0 ∩ Sk0+ν = ∅. As Sk = ∅ for k = 0, . . . ,k0 − 1,
condition (i) in Theorem 3.1 holds for all k � 0.

Condition (ii) in Theorem 3.1 has already been verified in Example 2.2. Using that logD(
|n|
Dκ ) = logD(|n|)−κ , the definition

of the functions ψ̂k shows that for n 
= 0,

∞∑
k=0

√
Dkψ̂k(n) = g

(
logD

(|n|))+
∞∑

k=k0+1

(
g
(
logD

(|n|)+ (k − k0)
)+ g

(
logD

(|n|)− (k − k0)
))

=
∑
κ∈Z

g
(
logD

(|n|)− κ
)= 1.

Thus condition (iii) in Theorem 3.1 is satisfied for n 
= 0. Clearly, it is satisfied for n = 0 as well.
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In order to verify condition (iv) in Theorem 3.1, we note that the largest number in
⋃P−1

ν=0 Sk+ν is not more than

DN+k+P−1−k0 = DN+k+�N−M+1�−1−k0 � DN+k+N−M−k0 = D2N−M+k−k0 .

The minimal number in Sk is not less than −DN+k−k0 . Thus

ρk � D2N−M+k−k0 − (−DN+k−k0
)= Dk(D2N−M−k0 + DN−k0

)
.

For condition (iv) in Theorem 3.1 to hold, it suffices to have D2N−M−k0 + DN−k0 < 1 which is equivalent to (3.10), as assumed
in this example. Hence, it follows from Corollary 3.2 that {T �

k ψk}k�0,�=0,...,Dk−1 and {T �
k ψ̃k}k�0,�=0,...,Dk−1 form a pair of dual

wavelet frames for L2(0,2π).
Concrete constructions based on the above can easily be realized by taking the function g to be a centered B-spline

supported on [−N, N]. As an illustration, we set

g(x) := B3(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2 x2 + 3

2 x + 9
8 , if − 3

2 � x � − 1
2 ,

−x2 + 3
4 , if − 1

2 � x � 1
2 ,

1
2 x2 − 3

2 x + 9
8 , if 1

2 � x � 3
2 ,

0, otherwise.

(3.11)

Then g is nonnegative, bounded, real-valued, and supported on [− 3
2 , 3

2 ], i.e., M = − 3
2 and N = 3

2 . We take the dilation factor
D to be 2. Thus we can let P = �N − M + 1� = 4, and take k0 > N + log2(2N−M + 1) = 3

2 + log2 9, e.g., k0 = 5. With this
choice, ψ̂k only has one bump on each of the positive and negative axes if k > N + k0 = 13

2 .

Fig. 1 shows the plots of ψk and ψ̂k defined by (3.11) and (2.8) for D = 2 and k = 8, and the corresponding ψ̃k and ̂̃ψk
from (3.5).

Note that Example 3.2 shows that Corollary 3.2 can be used to construct wavelet frames {T �
k ψk}k�0,�=0,...,Dk−1 for

L2(0,2π) with only one generator ψk for each level k. This is in contrast to the approaches based on multiresolution anal-
yses in [13,14]: typically, for a dilation factor D � 2, a periodic wavelet frame constructed from a multiresolution analysis
would have at least D − 1 generators at each level.

Returning to more general values of Lk , we now employ Corollary 3.3 to obtain explicit pairs of periodic frames that are
hybrids of Gabor and wavelet types.

Example 3.3. We continue further the setup in Example 2.3 with a few minor modifications. As in Example 3.1, if∑
k∈Z g(k) 
= 0, by multiplying g with a nonzero constant, we can ensure that (3.7) holds. In addition, we assume that

for an appropriate integer k0 > 0,

3(N − M) + 2k < Lk, k � k0. (3.12)

This is possible, e.g., if we assume that Lk − 2k → ∞ as k → ∞. We now verify the conditions in Corollary 3.3.
As conditions (ii) and (iii) in Corollary 2.1 have already been verified in Example 2.3, to apply Corollary 3.3, it remains

to check conditions (i) and (iii) in Theorem 3.1 and the inequality (3.6). Note that supp ψ̂k0 ⊆ {M, . . . , N}, and for k > k0,

supp ψ̂k ⊆ {
M − (k − k0), . . . , N − (k − k0)

}∪ {M + k − k0, . . . , N + k − k0}
⊆ {

M − (k − k0), . . . , N + k − k0
}
. (3.13)

It follows that for ν � 1,

Sk+ν ⊆ {
M − (k + ν − k0), . . . , N − (k + ν − k0)

}∪ {M + k + ν − k0, . . . , N + k + ν − k0}.
Consequently, Sk ∩ Sk+ν = ∅ if N + k − k0 < M + k + ν − k0 and N − (k + ν − k0) < M − (k − k0), i.e., if ν � N − M + 1. So
condition (i) in Theorem 3.1 is satisfied with P = N − M + 1. Also, for each n ∈ Z,

∞∑
k=0

√
Lkψ̂k(n) = g(n) +

∞∑
k=k0+1

(
g(n − k + k0) + g(n + k − k0)

)=
∑
κ∈Z

g(n − κ) = 1,

where (3.7) is applied in the last equality. Thus condition (iii) in Theorem 3.1 is satisfied.
In order to check (3.6), we note that the largest element in

⋃P−1
ν=0 Sk+ν is at most N + k + N − M − k0 and that the

minimal element in
⋃P−1

ν=0 Sk+ν is at least M − (k + N − M − k0). Thus, for σk in (3.6), we have

σk � N + k + N − M − k0 − (
M − (k + N − M − k0)

)= 3(N − M) + 2(k − k0) � 3(N − M) + 2k.

As a result, choosing k0 such that (3.12) holds, the inequality (3.6) is satisfied. Hence, by Corollary 3.3, this setup leads to
pairs of dual periodic frames that are hybrids of Gabor frames and wavelet frames.
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Fig. 1. Plots of ψk (top left) and ψ̂k (top right) defined by (3.11) and (2.8) for D = 2, k0 = 5 and k = 8, and the corresponding ψ̃k (bottom left) and ̂̃ψk

(bottom right) from (3.5) as in Example 3.2.

In a special case the setup in Example 3.3 can be tailored to a construction of real-valued and symmetric frame genera-
tors ψk .

Example 3.4. Employing the setup in Example 3.3, we impose the additional assumptions that g is continuous, symmetric,
and supported on [−N, N] for some N � 1. This is in line with our aim of constructing frame generators ψk that are
real-valued and symmetric, which amounts to the requirement that the functions ψ̂k are real-valued and symmetric on Z.

For a fixed positive integer k0, defining ψ̂k(n) as in (2.11), we now check that for every k it holds that ψ̂k(n) is real-
valued and that ψ̂k(−n) = ψ̂k(n) for all n ∈ Z. We note that for k = k0, these statements are obvious because g(−x) = g(x).
Next, consider any k > k0. Then, for any n ∈ Z,

ψ̂k(−n) = g(−n − k + k0) + g(−n + k − k0)√
Lk

= g(n + k − k0) + g(n − k + k0)√
Lk

= ψ̂k(n).

Since g is continuous and supported on [−N, N], we have g(−N) = g(N) = 0. Thus supp ψ̂k0 ⊆ {−N + 1, . . . , N − 1}, and
it follows from (3.13) that for k > k0,
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supp ψ̂k ⊆ {−N + 1 − (k − k0), . . . , N − 1 + k − k0
}
.

Consequently, we can take P in Theorem 3.1 as P = (N − 1) − (−N + 1) + 1 = 2N − 1.
As an illustration of this construction, for any positive integer N , we take

g(x) :=
{

tan π
4N cos πx

2N , if − N � x � N,

0, otherwise.
(3.14)

Then g is nonnegative, continuous, real-valued, symmetric, and supported on [−N, N]. By a straightforward calculation,

N∑
k=−N

cos
kπ

2N
=

N−1∑
k=−N+1

cos
kπ

2N
= cot

π

4N
,

which shows that
∑

k∈Z g(k) = 1. Thus, (3.7) holds. For the sequence {Lk}k�0, we put Lk = k2. Then we can find an appro-
priate k0 for which

6(N − 1) + 2k < k2, k � k0. (3.15)

This gives (3.12).
Based on the function g in (3.14), the trigonometric polynomial ψk obtained from (2.11) achieves optimal time-

localization in the following sense. In [1], time-localization of a function f in L2(0,2π) with
∑

n∈Z f̂ (n) f̂ (n + 1) 
= 0 is
measured by its angular variance defined by

�θ( f )2 = (
∑

n∈Z |̂ f (n)|2)2 − |∑n∈Z f̂ (n) f̂ (n + 1)|2
|∑n∈Z f̂ (n) f̂ (n + 1)|2

. (3.16)

It is shown in [10,11] that among all h ∈ L2(0,2π) with supp ĥ = {−N + 1, . . . , N − 1},

�θ(h)2 � �θ(ψk0)
2,

i.e., the minimum angular variance is attained by ψk0 . Using this fact and the definition (3.16), a calculation then shows
that for each k � k0 + N , ψk gives the minimum angular variance among all f whose Fourier coefficients are of the form

f̂ (n) = ĥ(n − k + k0) + ĥ(n + k − k0), n ∈ Z,

where h ∈ L2(0,2π) with supp ĥ = {−N + 1, . . . , N − 1}.
Taking N = 5, (3.15) holds for all k � 7, so we choose k0 = 7. Fig. 2 shows the plots of ψk and ψ̂k defined by (3.14) and

(2.11) for N = 5 and k = 12, and the corresponding ψ̃k and ̂̃ψk from (3.1).

We end the paper with a comment on application of the constructed dual periodic frames to practical problems.
Certain applications involve thresholding, such as during denoising and deconvolution, or require visualization of the time–
frequency plane. In these instances, the frame coefficients 〈 f , T �

k ψk〉 given by (1.5) have to be compared over all k ∈ I

and � = 0, . . . , Lk − 1. However, our periodic frames {T �
k ψk}k∈I,�=0,...,Lk−1 are nonstationary; in particular, the norm ‖T �

k ψk‖,
which equals ‖ψk‖, changes as k varies. Thus, in order to obtain a meaningful analysis of f , the frame coefficients 〈 f , T �

k ψk〉
need to be normalized during the processing. The calibration can be achieved via dividing 〈 f , T �

k ψk〉 by ‖ψk‖. Note that
this is just a practical measure for processing in applications. After the required analysis, we would still apply (1.4) to the
original coefficients 〈 f , T �

k ψk〉 for the synthesis of f .
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Appendix A. Proof of Theorem 2.1

To show that {T �
k ψk}k∈I,�=0,...,Lk−1 is a Bessel sequence with bound B , it suffices to establish that the inequality

∑
k∈I

Lk−1∑
�=0

∣∣〈 f , T �
k ψk

〉∣∣2 � B‖ f ‖2
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Fig. 2. Plots of ψk (top left) and ψ̂k (top right) defined by (3.14) and (2.11) for Lk = k2, N = 5, k0 = 7 and k = 12, and the corresponding ψ̃k (bottom left)

and ̂̃ψk (bottom right) from (3.1) as in Example 3.4.

holds for all f in a dense subspace of L2(0,2π); we will consider the subspace formed by all trigonometric polynomials.
By the same arguments as in the first part of the proof of [12, Theorem 4.1],

∑
k∈I

Lk−1∑
�=0

∣∣〈 f , T �
k ψk

〉∣∣2 =
∑
k∈I

Lk

Lk−1∑
j=0

∣∣∣∣∑
p∈Z

f̂ ( j + Lk p)ψ̂k( j + Lk p)

∣∣∣∣2. (A.1)

Indeed, as we have seen already in (1.5), we can write

〈
f , T �

k ψk
〉=∑

n∈Z
f̂ (n)ψ̂k(n)e2π in�/Lk =

Lk−1∑
j=0

α̂k( j)e2π i j�/Lk , (A.2)

where α̂k is the Lk-periodic sequence defined by
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α̂k( j) :=
∑
p∈Z

f̂ ( j + Lk p)ψ̂k( j + Lk p), j = 0, . . . , Lk − 1; (A.3)

now the expression in (A.1) is obtained by applying the inverse finite Fourier transform to α̂k , followed by an application of
Parseval’s identity.

Now it follows from (A.1) that

∑
k∈I

Lk−1∑
�=0

∣∣〈 f , T �
k ψk

〉∣∣2 =
∑
k∈I

Lk

Lk−1∑
j=0

∑
p∈Z

f̂ ( j + Lk p)ψ̂k( j + Lk p)
∑
q∈Z

f̂ ( j + Lkq)ψ̂k( j + Lkq)

=
∑
k∈I

Lk

∑
p∈Z

Lk−1∑
j=0

f̂ ( j + Lk p)ψ̂k( j + Lk p)
∑
q∈Z

f̂ ( j + Lkq)ψ̂k( j + Lkq). (A.4)

Note that with the exception of the sum over k, all the above summations are finite sums as f is a trigonometric polynomial.
The Lk-periodicity of α̂k implies that for every j = 0, . . . , Lk − 1 and p ∈ Z,

α̂k( j + Lk p) = α̂k( j) =
∑
q∈Z

f̂ ( j + Lkq)ψ̂k( j + Lkq);

thus (A.4) can be rewritten as

∑
k∈I

Lk−1∑
�=0

∣∣〈 f , T �
k ψk

〉∣∣2 =
∑
k∈I

Lk

∑
p∈Z

Lk−1∑
j=0

f̂ ( j + Lk p)ψ̂k( j + Lk p)
∑
q∈Z

f̂
(
( j + Lk p) + Lkq

)
ψ̂k
(
( j + Lk p) + Lkq

)
=
∑
k∈I

Lk

∑
n∈Z

f̂ (n)ψ̂k(n)
∑
q∈Z

f̂ (n + Lkq)ψ̂k(n + Lkq). (A.5)

We shall now interchange the infinite sum over k with some of the other sums in (A.5). This can be justified by replacing
all the terms in (A.5) by their absolute values and following the arguments below. Interchanging the sums in (A.5), we have

∑
k∈I

Lk−1∑
�=0

∣∣〈 f , T �
k ψk

〉∣∣2 =
∑
q∈Z

∑
k∈I

Lk

∑
n∈Z

f̂ (n)ψ̂k(n) f̂ (n + Lkq)ψ̂k(n + Lkq)

=
∑
k∈I

Lk

∑
n∈Z

f̂ (n)ψ̂k(n) f̂ (n)ψ̂k(n) +
∑

q∈Z\{0}

∑
k∈I

Lk

∑
n∈Z

f̂ (n)ψ̂k(n) f̂ (n + Lkq)ψ̂k(n + Lkq)

=
∑
n∈Z

∣∣ f̂ (n)
∣∣2∑

k∈I

Lk
∣∣ψ̂k(n)

∣∣2 + R, (A.6)

where

R :=
∑

q∈Z\{0}

∑
k∈I

Lk

∑
n∈Z

f̂ (n)ψ̂k(n) f̂ (n + Lkq)ψ̂k(n + Lkq).

Applying the Cauchy–Schwarz inequality twice, we have

|R| �
∑
k∈I

Lk

∑
q∈Z\{0}

∑
n∈Z

∣∣ f̂ (n) f̂ (n + Lkq)ψ̂k(n)ψ̂k(n + Lkq)
∣∣

�
∑
k∈I

Lk

∑
q∈Z\{0}

(∑
n∈Z

∣∣ f̂ (n)
∣∣2∣∣ψ̂k(n)ψ̂k(n + Lkq)

∣∣)1/2(∑
n∈Z

∣∣ f̂ (n + Lkq)
∣∣2∣∣ψ̂k(n)ψ̂k(n + Lkq)

∣∣)1/2

�
∑
k∈I

Lk

( ∑
q∈Z\{0}

∑
n∈Z

∣∣ f̂ (n)
∣∣2∣∣ψ̂k(n)ψ̂k(n + Lkq)

∣∣)1/2( ∑
q∈Z\{0}

∑
n∈Z

∣∣ f̂ (n + Lkq)
∣∣2∣∣ψ̂k(n)ψ̂k(n + Lkq)

∣∣)1/2

. (A.7)

Observe that by the substitution m = n + Lkq for each fixed q ∈ Z\{0},∑
q∈Z\{0}

∑
n∈Z

∣∣ f̂ (n + Lkq)
∣∣2∣∣ψ̂k(n)ψ̂k(n + Lkq)

∣∣= ∑
q∈Z\{0}

∑
m∈Z

∣∣ f̂ (m)
∣∣2∣∣ψ̂k(m − Lkq)ψ̂k(m)

∣∣
=

∑
q∈Z\{0}

∑
m∈Z

∣∣ f̂ (m)
∣∣2∣∣ψ̂k(m)ψ̂k(m + Lkq)

∣∣;
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therefore (A.7) implies that

|R| �
∑
k∈I

Lk

∑
q∈Z\{0}

∑
n∈Z

∣∣ f̂ (n)
∣∣2∣∣ψ̂k(n)ψ̂k(n + Lkq)

∣∣. (A.8)

Applying this estimate to (A.6), we obtain

∑
k∈I

Lk−1∑
�=0

∣∣〈 f , T �
k ψk

〉∣∣2 �
∑
n∈Z

∣∣ f̂ (n)
∣∣2∑

k∈I

Lk
∣∣ψ̂k(n)

∣∣2 +
∑
n∈Z

∣∣ f̂ (n)
∣∣2∑

k∈I

Lk

∑
q∈Z\{0}

∣∣ψ̂k(n)ψ̂k(n + Lkq)
∣∣

=
∑
n∈Z

∣∣ f̂ (n)
∣∣2∑

k∈I

Lk

∑
q∈Z

∣∣ψ̂k(n)ψ̂k(n + Lkq)
∣∣.

Hence, it follows from (2.1) that

∑
k∈I

Lk−1∑
�=0

∣∣〈 f , T �
k ψk

〉∣∣2 � B
∑
n∈Z

∣∣ f̂ (n)
∣∣2 = B‖ f ‖2,

proving that {T �
k ψk}k∈I,�=0,...,Lk−1 is a Bessel sequence with bound B .

If (2.2) also holds, let again f be a trigonometric polynomial. Then by (A.6) and (A.8),

∑
k∈I

Lk−1∑
�=0

∣∣〈 f , T �
k ψk

〉∣∣2 �
∑
n∈Z

∣∣ f̂ (n)
∣∣2∑

k∈I

Lk
∣∣ψ̂k(n)

∣∣2 −
∑
k∈I

Lk

∑
q∈Z\{0}

∑
n∈Z

∣∣ f̂ (n)
∣∣2∣∣ψ̂k(n)ψ̂k(n + Lkq)

∣∣
=
∑
n∈Z

∣∣ f̂ (n)
∣∣2(∑

k∈I

Lk
∣∣ψ̂k(n)

∣∣2 −
∑

q∈Z\{0}

∑
k∈I

Lk
∣∣ψ̂k(n)ψ̂k(n + Lkq)

∣∣)
� A

∑
n∈Z

∣∣ f̂ (n)
∣∣2 = A‖ f ‖2.

Since this holds for all trigonometric polynomials f , we conclude that {T �
k ψk}k∈I,�=0,...,Lk−1 is a frame for L2(0,2π) with

bounds A, B .
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