89 research outputs found

    Physiological constraints on the global distribution of <i>Trichodesmium</i> ? effect of temperature on diazotrophy

    No full text
    International audienceThe cyanobacterium Trichodesmium is an important link in the global nitrogen cycle due to its significant input of atmospheric nitrogen to the ocean. Attempts to incorporate Trichodesmium in ocean biogeochemical circulation models have, so far, relied on the observed correlation between temperature and Trichodesmium abundance. This correlation may result in part from a direct effect of temperature on Trichodesmium growth rates through the control of cellular biochemical processes, or indirectly through temperature influence on mixed layer depth, light and nutrient regimes. Here we present results indicating that the observed correlation of Trichodesmium with temperature in the field reflects primarily the direct physiological effects of temperature on diazotrophic growth of Trichodesmium. Trichodesmium IMS-101 (an isolate of Trichodesmium) could acclimate and grow at temperatures ranging from 20 to 34°C. Maximum growth rates (?max=0.25 day?1) and maximum nitrogen fixation rates (0.13 mmol N mol POC?1 h?1) were measured within 24 to 30°C. Combining this empirical relationship with global warming scenarios derived from state-of-the-art climate models sets a physiological constraint on the future distribution of Trichodesmium that could significantly affect the future nitrogen input into oligotrophic waters by this diazotroph

    The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum

    Get PDF
    Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2_2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced atmospheric Fe supply in biogeochemical cycles is limited by knowledge of the fluxes and 'bioavailability' of atmospheric Fe during glacial intervals. Here, we assess the effect of Fe fertilization by dust, dry-extracted from the Last Glacial Maximum portion of the EPICA Dome C Antarctic ice core, on the Antarctic diatom species Eucampia antarctica\textit{Eucampia antarctica} and Proboscia inermis\textit{Proboscia inermis}. Both species showed strong but differing reactions to dust addition. E. antarctica\textit{E. antarctica} increased cell number (3880 vs.786 cells mL1^{-1}), chlorophyll a (51 vs. 3.9 μg mL1^{-1}) and particulate organic carbon (POC; 1.68 vs. 0.28 μg mL1^{-1}) production in response to dust compared to controls. P. inermis\textit{P. inermis} did not increase cell number in response to dust, but chlorophyll aa and POC per cell both strongly increased compared to controls (39 vs. 15 and 2.13 vs. 0.95 ng cell1^{-1} respectively). The net result of both responses was a greater production of POC and chlorophyll aa, as well as decreased Si:C and Si:N incorporation ratios within cells. However, E, antarctica\textit{E, antarctica} decreased silicate uptake for the same nitrate and carbon uptake, while P. inermis\textit{P. inermis} increased carbon and nitrate uptake for the same silicate uptake. This suggests that nutrient utilization changes in response to Fe addition could be driven by different underlying mechanisms between different diatom species. Enhanced supply of atmospheric dust to the surface ocean during glacial intervals could therefore have driven nutrient-utilization changes which could permit greater carbon fixation for lower silica utilization. Additionally, both species responded more strongly to lower amounts of direct Fe chloride addition than they did to dust, suggesting that not all the Fe released from dust was in a bioavailable form available for uptake by diatoms.Natural Environment Research Council (Studentship), Royal Society (Grant ID: RP120096), German Research Foundation (Grant IDs: HO-4217, BR-3794

    Ocean acidification affects iron speciation during a coastal seawater mesocosm experiment

    Get PDF
    Rising atmospheric CO2 is acidifying the surface ocean, a process which is expected to greatly influence the chemistry and biology of the future ocean. Following the development of iron-replete phytoplankton blooms in a coastal mesocosm experiment at 350, 700, and 1050 μatm pCO2, we observed significant increases in dissolved iron concentrations, Fe(II) concentrations, and Fe(II) half-life times during and after the peak of blooms in response to CO2 enrichment and concomitant lowering of pH, suggesting increased iron bioavailability. If applicable to the open ocean this may provide a negative feedback mechanism to the rising atmospheric CO2 by stimulating marine primary production

    Iron biogeochemistry across marine systems progress from the past decade

    Get PDF
    Based on an international workshop (Gothenburg, 14–16 May 2008), this review article aims to combine interdisciplinary knowledge from coastal and open ocean research on iron biogeochemistry. The major scientific findings of the past decade are structured into sections on natural and artificial iron fertilization, iron inputs into coastal and estuarine systems, colloidal iron and organic matter, and biological processes. Potential effects of global climate change, particularly ocean acidification, on iron biogeochemistry are discussed. The findings are synthesized into recommendations for future research areas

    Nitrogen fixation in the South Atlantic Gyre and the Benguela Upwelling System

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L16608, doi:10.1029/2011GL048315.Dinitrogen (N2) fixation is recognized as an important input of new nitrogen (N) to the open ocean gyres, contributing to the export of organic matter from surface waters. However, very little N2-fixation research has focused on the South Atlantic Gyre, where dust deposition of iron (Fe), an important micronutrient for diazotrophs, is seasonally low. Recent modeling efforts suggest that N2-fixation may in fact be closely coupled to, and greatest in, areas of denitrification, as opposed to the oceanic gyres. One of these areas, the Benguela Upwelling System, lies to the east of the South Atlantic Gyre. In this study we show that N2-fixation in surface waters across the South Atlantic Gyre was low overall (<1.5 nmol N l−1 d−1) with highest rates seen in or near the Benguela Upwelling System (up to ∼8 nmol N l−1 d−1). Surface water dissolved Fe (dFe) concentrations were very low in the gyre (∼0.3 nM or lower), while soluble reactive phosphorus (SRP) concentrations were relatively high (∼0.15 μM). N2-fixation rates across the entire sampling area were significantly positively correlated to dFe, but also to SRP and NO3−. Thus, high NO3− concentrations did not exclude N2-fixation in the upwelling region, which provides evidence that N2-fixation may be occurring in previously unrecognized waters, specifically near denitrification zones. However the gene encoding for a nitrogenase component (nifH) was not detected from known diazotrophs at some stations in or near the upwelling where N2-fixation was greatest, suggesting the presence of unknown diazotrophs in these waters.Funding for this research was provided by NSF grants OCE‐0452883 (to E.A.W. and M.A.S.), OCE‐0825922 (to E.A.W.), and The Gordon and Betty Moore Foundation (JPZ)

    Regeneration of Fe(II) during EIFeX and SOFeX

    Get PDF
    Investigations into Fe(II) cycling during two Southern Ocean mesoscale iron enrichment experiments, SOFeX and EIFeX, clearly show the importance of Fe(II) to iron speciation during these experiments. In both cases the added Fe(II) persisted significantly longer than its expected oxidation time indicating a significant Fe reduction process at work. During EIFeX diel studies showed a strong photochemically induced cycle in Fe(II) production in sunlit surface waters. Our results suggest that the photochemical cycling of iron may also be important in unfertilized waters of the Southern Ocean

    A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101

    Get PDF
    Trichodesmium is a globally important marine diazotroph that accounts for approximately 60-80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt

    Impact of eddy–wind interaction on eddy demographics and phytoplankton community structure in a model of the North Atlantic Ocean

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Dynamics of Atmospheres and Oceans 52 (2011): 80-94, doi:10.1016/j.dynatmoce.2011.01.003.Two eddy-resolving (0.1-degree) physical-biological simulations of the North Atlantic Ocean are compared, one with the surface momentum flux computed only from wind velocities and the other using the difference between air and ocean velocity vectors. This difference in forcing has a significant impact on the intensities and relative number of different types of mesoscale eddies in the Sargasso Sea. Eddy/wind interaction significantly reduces eddy intensities and increases the number of mode-water eddies and “thinnies” relative to regular cyclones and anticyclones; it also modifies upward isopycnal displacements at the base of the euphotic zone, increasing them in the centers of mode water eddies and at the edges of cyclones, and decreasing them in the centers of cyclones. These physical changes increase phytoplankton growth rates and biomass in mode-water eddies, bringing the biological simulation into better agreement with field data. These results indicate the importance of including the eddy/wind interaction in simulations of the physics and biology of eddies in the subtropical North Atlantic. However, eddy intensities in the simulation with eddy/wind interaction are lower than observed, which suggests a decrease in horizontal viscosity or an increase in horizontal grid resolution will be necessary to regain the observed level of eddy activity.LAA and DJM gratefully acknowledge the support of NASA grant 07-CARBON07-17. SCD and IDL gratefully acknowledge support from the NSF Center for Microbial Oceanography, Research and Education (C-MORE; NSF EF-0424599)

    Corporate Social Responsibility/Sustainability Reporting Among the Fortune Global 250: Greenwashing or Green Supply Chain?

    Get PDF
    The sustainability reporting efforts of MNCs who are members of the Fortune Global 250 (FG250) was investigated. The focus was on sustainability reporting by MNCs of supply chain impacts. The reporting of FG250 MNCs was examined to determine if greenwashing was occurring or whether MNCs had committed to operating a green supply chain. A mixed methodology was used consisting of quantitative analysis of twenty-five MNC CSR/sustainability reports which were randomly selected from the FG250 listing. Qualitative analysis using content analysis was also conducted on the reports. Both methodologies concentrated on the sustainability reporting of the selected MNCs in regard to their supply chain. Findings were mixed as there were great variations among the MNCs in their level of sustainability reporting about their supply chains. Some MNCs did not report on the activities of their supply chain at all (20%), the majority of the MNCs reported on their supply chain impacts at the value and goal level (48%), while the rest reported at the management approach level (32%). A majority of the sampled MNCs could be accused of greenwashing due to the lack of detailed quantitative information provided by the MNCs on the environmental impacts of their supply chai

    The Influence of pCO2 and Temperature on Gene Expression of Carbon and Nitrogen Pathways in Trichodesmium IMS101

    Get PDF
    Growth, protein amount, and activity levels of metabolic pathways in Trichodesmium are influenced by environmental changes such as elevated pCO2 and temperature. This study examines changes in the expression of essential metabolic genes in Trichodesmium grown under a matrix of pCO2 (400 and 900 µatm) and temperature (25 and 31°C). Using RT-qPCR, we studied 21 genes related to four metabolic functional groups: CO2 concentrating mechanism (bicA1, bicA2, ccmM, ccmK2, ccmK3, ndhF4, ndhD4, ndhL, chpX), energy metabolism (atpB, sod, prx, glcD), nitrogen metabolism (glnA, hetR, nifH), and inorganic carbon fixation and photosynthesis (rbcL, rca, psaB, psaC, psbA). nifH and most photosynthetic genes exhibited relatively high abundance and their expression was influenced by both environmental parameters. A two to three orders of magnitude increase was observed for glnA and hetR only when both pCO2 and temperature were elevated. CO2 concentrating mechanism genes were not affected by pCO2 and temperature and their expression levels were markedly lower than that of the nitrogen metabolism and photosynthetic genes. Many of the CO2 concentrating mechanism genes were co-expressed throughout the day. Our results demonstrate that in Trichodesmium, CO2 concentrating mechanism genes are constitutively expressed. Co-expression of genes from different functional groups were frequently observed during the first half of the photoperiod when oxygenic photosynthesis and N2 fixation take place, pointing at the tight and complex regulation of gene expression in Trichodesmium. Here we provide new data linking environmental changes of pCO2 and temperature to gene expression in Trichodesmium. Although gene expression indicates an active metabolic pathway, there is often an uncoupling between transcription and enzyme activity, such that transcript level cannot usually be directly extrapolated to metabolic activity
    corecore