288 research outputs found

    Tests with three-dimensional adjustments in the rectangular working section of the French T2 wind tunnel with an AS 07-type swept-back wing model

    Get PDF
    The results obtained on the AS 07 wing and the working section walls for three types of configurations are reported. The first, called non-adapted, corresponds to the divergent upper and lower rectilinear walls which compensate for limit layer thickening. It can serve as a basis for complete flow calculations. The second configuration corresponds to wall shapes determined from calculations which tend to minimize interference at the level of the fuselage. Finally, the third configuration, called two-dimensional adaptation, uses the standard method for T2 profile tests. This case was tested to determine the influence of wall shape and error magnitude. These results are not sufficient to validate the three-dimensional adaptation; they must be coordinated with calculations or with unlimited atmosphere tests

    Measurements of temperature and pressure fluctuations in the T prime 2 cryogenic wind tunnel

    Get PDF
    Cold wire measurement of temperature fluctuations were made in a DERAT T'2 induction powered cryogenic wind tunnel for 2 types of liquid nitrogen injectors. Thermal turbulence measured in the tranquilization chamber depends to a great extent on the injector used; for fine spray of nitrogen drops, this level of turbulence seemed completely acceptable. Fluctuations in static pressure taken from the walls of the vein by Kulite sensors showed that there was no increase in aerodynamic noise during cryogenic gusts

    Report on tests of a CAST 10 airfoil with fixed transition in the T2 transonic cryogenic wind tunnel with self-adaptive walls

    Get PDF
    Described are tests on the CAST 10 airfoil in tripped-transition, carried out in the cryogenic and transonic wind-tunnel T2 fitted with self-adaptive walls. These tests follow those which were performed in natural transition and were presented in a previous note. Firstly, a complement was realized to pinpoint the location of the natural transition on the upper surface of the airfoil; this was done by a longitudinal exploration in the boundary layer. Secondly, in a first stage, the transition was only tripped on the lower surface with a carborundum strip of 0.045 mm thickness, situated at 5% of chord (T 1/2 D). These tests were performed here to separate the phenomena in relation to the lower surface and those in relation to the upper surface which occur in natural transition (TN). In a second stage, the transition was normally tripped on both sides of the profile (TD), likewise at x/c = 5% and h = 0.045 mm. The test configurations of the previous serial were experimented again and results obtained in the three cases (TN), (T 1/2 N) and (TD) were compared, in particular those concerned with the effect of the Reynolds number on aerodynamic coefficients of the airfoil. The gathering of the experimental values around a Reynolds number of 20 millions is observed; but before this number, the evolutions of the curves in the three cases tested are different

    The response of the regional longwave radiation balance and climate system in Europe to an idealized afforestation experiment

    Get PDF
    Afforestation is an important mitigation strategy for climate change due to its carbon sequestration potential. Besides this favorable biogeochemical effect on global CO2 concentrations, afforestation also affects the regional climate by changing the biogeophysical land surface characteristics. In this study, we investigate the effects of an idealized global CO2 reduction to pre-industrial conditions by a Europe-wide afforestation experiment on the regional longwave radiation balance, starting in the year 1986 on a continent entirely covered with grassland. Results show that the impact of biogeophysical processes on the surface temperatures is much stronger than that of biogeochemical processes. Furthermore, biogeophysically induced changes of the surface temperatures, atmospheric temperatures, and moisture concentrations are as important for the regional longwave radiation balance as the global CO2 reduction. While the outgoing longwave radiation is increased in winter, it is reduced in summer. In terms of annual total, a Europe-wide afforestation has a regional warming effect despite reduced CO2 concentrations. Thus, even for an idealized reduction of the global CO2 concentrations to pre-industrial levels, the European climate response to afforestation would still be dominated by its biogeophysical effects.</p

    Linear and non-linear amplification of high-mode perturbations at the ablation fronts in HIPER targets.

    Get PDF
    The linear and non-linear sensitivity of the 180 kJ baseline HiPER target to high-mode perturbations, i.e. surface roughness, is addressed using two-dimensional simulations and a complementary analysis by linear and non-linear ablative Rayleigh–Taylor models. Simulations provide an assessment of an early non-linear stage leading to a significant deformation of the ablation surface for modes of maximum linear growth factor. A design using a picket prepulse evidences an improvement in the target stability inducing a delay of the non-linear behavior. Perturbation evolution and shape, evidenced by simulations of the non-linear stage, are analyzed with existing self-consistent non-linear theory

    From Research to Operational Biomonitoring of Freshwaters: A Suggested Conceptual Framework and Practical Solutions

    Get PDF
    International audienceThe contradictory demands of managers (quick relevant operational responses) and ecologists (need time for in-depth research) involved in freshwater biomonitoring are still relevant today. To contribute to solving this dilemma, we are proposing a novel biomonitoring approach, which among many others, could be used in this field and further developed in the future. Biomonitoring actions are integrated in conceptual schemes, in which hydrology, chemistry, hydrogeology and geomorphology bear as much importance as biology. Among biomonitoring tools, a harmonization system allows end-users to use a set of qualitative indicators (various biotic indices) and integrate the information given by individual biotic indices. Functional traits and calculation of an ecological potential in porous aquatic habitats (surficial coarse sediments and the hyporheic system) are regarded as a basis for assessing ecological functioning of streams and rivers. This last methodology takes into account the dynamics of water exchanges between surface water and groundwater. Objectives of ecological quality, ecological potentials and resilience capacity that need to be preserved or rehabilitated in aquatic habitats are established. In lakes, a similar approach was followed and a general typology of lake functioning was proposed, including that for urban lakes. All those biomonitoring tools are transferred to end-users and subject to further research. The final purpose is to promote practical high-tech tools which are continually and interactively connected with ongoing research

    Sensitivity of european temperature to albedo parameterization in the regional climate model COSMO-CLM linked to extreme land use changes

    Get PDF
    Previous studies based on observations and models are uncertain about the biophysical impact of af- and deforestation in the northern hemisphere mid-latitude summers, and show either a cooling or warming. The spatial distribution, magnitude and direction are still uncertain. In this study, the effect of three different albedo parameterizations in the regional climate model COSMO-CLM (v5.09) is examined performing idealized experiments at 0.44° horizontal resolution across the EURO-CORDEX domain during 1986–2015. De- and af-forestation simulations are compared to a simulation with no land cover change. Emphasis is put on the impact of changes in radiation and turbulent fluxes. A clear latitudinal pattern is found, which results partly due to the strong land cover conversion from forest- to grassland in the high latitudes and open land to forest conversion in mid-latitudes. Afforestation warms the climate in winter, and strongest in mid-latitudes. Results are indifferent in summer owing to opposing albedo and evapotranspiration effects of comparable size but different sign. Thus, the net effect is small for summer. Depending on the albedo parameterization in the model, the temperature effect can turn from cooling to warming in mid-latitude summers. The summer warming due to deforestation to grassland is up to 3°C higher than due to afforestation. The cooling by grass or warming by forest is in magnitude comparable and small in winter. The strength of the described near-surface temperature changes depends on the magnitude of the individual biophysical changes in the specific background climate conditions of the region. Thus, the albedo parameterization need to account for different vegetation types. Furthermore, we found that, depending on the region, the land cover change effect is more important than the model uncertainty due to albedo parameterization. This is important information for model development
    • …
    corecore