

Assessing the decadal predictability of West African monsoon precipitation in a multi-model RCM downscaling experiment

M. Warscher¹, H. Kunstmann¹, A. Paxian², H. Paeth², D. Sein³, D. Jacob⁴, M. Breil⁵, H.J. Panitz⁵, T. Engel⁶, A. Fink⁵, J. Tödter⁷, B. Ahrens⁷

Karlsruhe Institute of Technology (KIT), Campus Alpin – Institute of Meteorology and Climate Research (IMK-IFU)

¹ Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research IMK-IFU, Garmisch-Partenkirchen, Germany.	
² University of Würzburg, Institute of Geography, Würzburg, Germany.	8
³ Alfred Wegener Institute, Climate Sciences- Climate Dynamics, Bremerhaven, Germany.	
⁴ Max Planck Institute for Meteorology, Climate Service Center, Hamburg, Germany.	
⁵ Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research IMK-TRO, Karlsruhe, Germany.	section.
⁶ University of Cologne, Institute for Geophysics and Meteorology, Cologne, Germany.	
⁷ University of Frankfurt, Institute for Atmospheric and Environmental Sciences, Frankfurt, Germany.	7
62	3

Outline

Introduction

- Motivation
- Projects MiKlip and DEPARTURE

Methods

- Global prediction system
- Regional Ensemble Generation
- RCM Experiments

Results

- Bias (ITCZ, SST, WAM rainfall)
- Skills Decadal Predictability

Conclusion

Motivation

- West Africa: decadal timescale and monsoon precipitation are highly relevant for the region
- Monsoon precipitation is a promising candidate for decadal predictability
- Project MiKlip (BMBF, Federal Ministry of Education and Research, Germany), <u>http://www.fona-miklip.de/</u>, dedicated to decadal predictions
- Regionalization: Focus on Europe and Africa (DEPARTURE - Decadal Prediction of African Rainfall and Atlantic Hurricane Activity)

Global Decadal Prediction

- Global Decadal Prediction System MiKlip
- MPI-ESM-LR (CMIP5-version)
- Assimilation of 3D ocean temperature and salinity anomalies from ECMWF NEMOVAR plus wind, temperature and pressure from ERA40 / ERA-Interim into the coupled model -> "best" initial conditions

Yearly initialised retrospective decadal predictions 1961-2012

- start yearly, let model run free for 10 years (decadal simulation)
- x10 ensemble members for each run (disturbed initial conditions)

RCM Ensemble

- 3 RCMs in different versions
- CCLM REMO WRF (0.44°)

4 decades, 3 ensemble members

- 1966-1975 1981-1990 1991-2000 2001-2010
- 3 members (best / worst / middle realisation based on evaluation of SSTs)

Many experiments

- Boundary conditions (aerosols, landuse)
- Alternative SVAT (Veg3D)
- Coupling to regional ocean model
- SST bias correction
- Model configuration
- Soil initialisation
- Spin-up procedures

1 8 8 8 3 2 1 0 0 0 1 2 3 8 6 6 1

SST Bias

Observed and modeled SST during JJAS season (decade 2001-2010)

WRF model physics

JJAS Precipitation 1966-1975 - R5

Best choice of

- cumulus parameterization
- planetary boundary layer scheme
- microphysics scheme

WRF ref (old): CU - KF / PBL - YSU / MP - WSM5 WRF exp (new): CU - BMJ / PBL - ACM2 / MP - TH

Bias ITCZ Position

Bias ITCZ Position

ITCZ position from GCM and RCM ensemble means compared to GPCP, Decade 2001 – 2010 JJAS

Correlation coefficients JJAS precipitation compared to DEL (Willmott-Matsuura)

CCLM-ERA REMO-ERA MPI-ESM CCLM WRF REMO-W REMO-H REMO-01 REMO-02 RCM-MM

8

-1.0-0.8-0.6-0.5-0.4-0.3-0.2-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 Correlation Coefficient

з

first year of subperiod

2

з

first year of subperiod

Added value of RCMs

Prediction skill: all models, regions and decades

Performance of the global system, correlations from decade to decade based on 41 decades (1961 – 2001, starting each year) and 10 ensemble members for each decade (**410 decadal hindcasts**)

Boundary Conditions

RCM sensitivity to different boundary conditions / experiments JJAS precipitation bias 2001-2010 compared to DEL

MPI-ESM REMO-H REMO-O1 REMO-O2 CCLM CCLM-AOD CCLM-AOD/SST CCLM-SOIL CCLM-VEG CCLM-LUC CCLM-LUV

AOD: slightly positive effects SST: positive effects almost everywhere SOIL INIT.: almost no effects CCLM-VEG: positive in CS, negative in GC CCLM LUC and LUV: positive in GC, negative in WS

Conclusion

- RCMs have been further developed and adjusted for decadal predictions for Africa
- Bias reduction (SST, ITCZ position and WAM rainfall)
- Sensitivities to boundary conditions and model complexity relevant for decadal predictability
- Predictability: Skill and added value of RCMs
- MiKlip Database: an unprecedented database has been established for decadal climate simulations (global and regional)

Outlook and Publications

Outlook

- Application of boundary conditions (AOD, LCC) to ensemble runs
- Further systematical assessment of RCM skill and bias
- Transfer to a best RCM approach for decadal climate prediction

Publications

- Paeth et al..: Decadal predictability of the West African monsoon and the added value of dynamical downscaling, Climate Dynamics (submitted), 2015.
- Paxian et al.: Bias reduction in decadal predictions of West African monsoon rainfall, in prep.
- www.fona-miklip.de/en

WRF JJAS precipitation: correlation coefficients for different observation datasets

Region 1, West Sahel						
		GPCC	GPCP	CRU	DEL	TRMM
Dec. 2000	MPI a	0.062	0.033	0.332	0.027	0.145
	MPI b	-0.224	0.033	0.056	-0.135	-0.307
	MPI EM	-0.060	-0.149	0.231	-0.043	-0.044
	WRF a	0.034	0.050	0.434	-0.108	0.126
	WRF b	0.357	0.193	0.338	0.318	0.156
	WRF EM	0.179	0.122	0.440	0.048	0.168

WRF JJAS precipitation: correlation coefficients for different observation datasets

Region 1, West Sahel								
		GPCC	GPCP	CRU	DEL	TRMM		
Dec. 2000	MPI a	0.062	0.033	0.332	0.027	0.145		
	MPI b	-0.224	0.033	0.056	-0.135	-0.307	GCW	
	MPI EM	-0.060	-0.149	0.231	-0.043	-0.044		
	WRF a	0.034	0.050	0.434	-0.108	0.126		
	WRF b	0.357	0.193	0.338	0.318	0.156	RCM	
	WRF EM	0.179	0.122	0.440	0.048	0.168		
Region 3, Guinea Coast								
		GPCC	GPCP	CRU	DEL	TRMM		
Dec. 1980	MPI a	0.497	0.421	0.363	0.454	-		
	MPI b	0.026	0.421	-0.137	-0.028	-	GCM	
	MPI EM	0.316	0.204	0.153	0.263	-		
	WRF a	-0.417	-0.397	-0.382	-0.464	-		
	WRF b	0.159	0.164	0.166	0.193	-	RCM	
	WRF EM	-0.237	-0.209	-0.190	-0.242	-		

JJAS precipitation from ensemble means compared to observations (DEL, Willmott-Matsuura)

Precipitation compared to GPCP JJAS 2001-2010

100 200 500 1000 1500 2500 4000 Institute of Meteorology and Climate Research Karlsruhe Institute of Technology

SST and WAM Rainfall Bias

RCM precipitation compared to GPCP JJAS 2001-2010

"Biased" SST from GCM as boundary condition

RCM coupled to GCM ocean model \rightarrow SST modeled in high RCM

resolution

Correlation coefficients from decade to decade

Institute of Meteorology and Climate Research Karlsruhe Institute of Technology

Boundary Conditions

Aerosols

WAM precipitation: effect of improved AOD

aerosol optical depth from Kinne (annual cycle) instead of Tanré (stationary pattern)

Boundary Conditions

Aerosols

WAM precipitation: effect of improved AOD

