13 research outputs found

    Fly-derived DNA and camera traps are complementary tools for assessing mammalian biodiversity

    Get PDF
    Background Metabarcoding of vertebrate DNA found in invertebrates (iDNA) represents a potentially powerful tool for monitoring biodiversity. Preliminary evidence suggests fly iDNA biodiversity assessments compare favorably with established approaches such as camera trapping or line transects. Aims and Methods To assess whether fly-derived iDNA is consistently useful for biodiversity monitoring across a diversity of ecosystems, we compared metabarcoding of the mitochondrial 16S gene of fly pool-derived iDNA (range = 49–105 flies/site, N = 784 flies) with camera traps (range = 198–1,654 videos of mammals identified to the species level/site) at eight sites, representing different habitat types in five countries across tropical Africa. Results We detected a similar number of mammal species using fly-derived iDNA (range = 8–15 species/site) and camera traps (range = 8–27 species/site). However, the two approaches detected mostly different species (range = 6%–43% of species detected/site were detected with both methods), with fly-derived iDNA detecting on average smaller-bodied species than camera traps. Despite addressing different phylogenetic components of local mammalian communities, both methods resulted in similar beta-diversity estimates across sites and habitats. Conclusion These results support a growing body of evidence that fly-derived iDNA is a cost- and time-efficient tool that complements camera trapping in assessing mammalian biodiversity. Fly-derived iDNA may facilitate biomonitoring in terrestrial ecosystems at broad spatial and temporal scales, in much the same way as water eDNA has improved biomonitoring across aquatic ecosystems.Peer Reviewe

    Automatic Individual Identification of Patterned Solitary Species Based on Unlabeled Video Data

    Full text link
    The manual processing and analysis of videos from camera traps is time-consuming and includes several steps, ranging from the filtering of falsely triggered footage to identifying and re-identifying individuals. In this study, we developed a pipeline to automatically analyze videos from camera traps to identify individuals without requiring manual interaction. This pipeline applies to animal species with uniquely identifiable fur patterns and solitary behavior, such as leopards (Panthera pardus). We assumed that the same individual was seen throughout one triggered video sequence. With this assumption, multiple images could be assigned to an individual for the initial database filling without pre-labeling. The pipeline was based on well-established components from computer vision and deep learning, particularly convolutional neural networks (CNNs) and scale-invariant feature transform (SIFT) features. We augmented this basis by implementing additional components to substitute otherwise required human interactions. Based on the similarity between frames from the video material, clusters were formed that represented individuals bypassing the open set problem of the unknown total population. The pipeline was tested on a dataset of leopard videos collected by the Pan African Programme: The Cultured Chimpanzee (PanAf) and achieved a success rate of over 83% for correct matches between previously unknown individuals. The proposed pipeline can become a valuable tool for future conservation projects based on camera trap data, reducing the work of manual analysis for individual identification, when labeled data is unavailable

    Cytomegalovirus distribution and evolution in hominines

    Get PDF
    Herpesviruses are thought to have evolved in very close association with their hosts. This is notably the case for cytomegaloviruses (CMVs; genus Cytomegalovirus) infecting primates, which exhibit a strong signal of co-divergence with their hosts. Some herpesviruses are however known to have crossed species barriers. Based on a limited sampling of CMV diversity in the hominine (African great ape and human) lineage, we hypothesized that chimpanzees and gorillas might have mutually exchanged CMVs in the past. Here, we performed a comprehensive molecular screening of all 9 African great ape species/subspecies, using 675 fecal samples collected from wild animals. We identified CMVs in eight species/subspecies, notably generating the first CMV sequences from bonobos. We used this extended dataset to test competing hypotheses with various degrees of co-divergence/number of host switches while simultaneously estimating the dates of these events in a Bayesian framework. The model best supported by the data involved the transmission of a gorilla CMV to the panine (chimpanzee and bonobo) lineage and the transmission of a panine CMV to the gorilla lineage prior to the divergence of chimpanzees and bonobos, more than 800,000 years ago. Panine CMVs then co-diverged with their hosts. These results add to a growing body of evidence suggesting that viruses with a double-stranded DNA genome (including other herpesviruses, adenoviruses, and papillomaviruses) often jumped between hominine lineages over the last few million years.Peer Reviewe

    Recent genetic connectivity and clinal variation in chimpanzees.

    Get PDF
    Funder: Max-Planck-Gesellschaft (Max Planck Society); doi: https://doi.org/10.13039/501100004189Funder: Max Planck Society Innovation Fund Heinz L. Krekeler FoundationMuch like humans, chimpanzees occupy diverse habitats and exhibit extensive behavioural variability. However, chimpanzees are recognized as a discontinuous species, with four subspecies separated by historical geographic barriers. Nevertheless, their range-wide degree of genetic connectivity remains poorly resolved, mainly due to sampling limitations. By analyzing a geographically comprehensive sample set amplified at microsatellite markers that inform recent population history, we found that isolation by distance explains most of the range-wide genetic structure of chimpanzees. Furthermore, we did not identify spatial discontinuities corresponding with the recognized subspecies, suggesting that some of the subspecies-delineating geographic barriers were recently permeable to gene flow. Substantial range-wide genetic connectivity is consistent with the hypothesis that behavioural flexibility is a salient driver of chimpanzee responses to changing environmental conditions. Finally, our observation of strong local differentiation associated with recent anthropogenic pressures portends future loss of critical genetic diversity if habitat fragmentation and population isolation continue unabated

    Environmental variability supports chimpanzee behavioural diversity.

    Get PDF
    Funder: Max-Planck-Gesellschaft (Max Planck Society); doi: https://doi.org/10.13039/501100004189Funder: Heinz L. Krekeler FoundationLarge brains and behavioural innovation are positively correlated, species-specific traits, associated with the behavioural flexibility animals need for adapting to seasonal and unpredictable habitats. Similar ecological challenges would have been important drivers throughout human evolution. However, studies examining the influence of environmental variability on within-species behavioural diversity are lacking despite the critical assumption that population diversification precedes genetic divergence and speciation. Here, using a dataset of 144 wild chimpanzee (Pan troglodytes) communities, we show that chimpanzees exhibit greater behavioural diversity in environments with more variability - in both recent and historical timescales. Notably, distance from Pleistocene forest refugia is associated with the presence of a larger number of behavioural traits, including both tool and non-tool use behaviours. Since more than half of the behaviours investigated are also likely to be cultural, we suggest that environmental variability was a critical evolutionary force promoting the behavioural, as well as cultural diversification of great apes

    Human impact erodes chimpanzee behavioral diversity

    Get PDF
    Chimpanzees possess a large number of behavioral and cultural traits among nonhuman species. The “disturbance hypothesis” predicts that human impact depletes resources and disrupts social learning processes necessary for behavioral and cultural transmission. We used a dataset of 144 chimpanzee communities, with information on 31 behaviors, to show that chimpanzees inhabiting areas with high human impact have a mean probability of occurrence reduced by 88%, across all behaviors, compared to low-impact areas. This behavioral diversity loss was evident irrespective of the grouping or categorization of behaviors. Therefore, human impact may not only be associated with the loss of populations and genetic diversity, but also affects how animals behave. Our results support the view that “culturally significant units” should be integrated into wildlife conservation

    Brazzola et al. C. albellus

    No full text
    Mortality, time to hatching (day degrees), and hatchling body lenght (mm) and yolk sac volume (mm3) 1 and 10 days after hatching of whitefish (C. albellus) raised singly at one of several different concentrations of 17alpha-etinyloestradiol (EE2) or Fluconazol

    Brazzola et al. C. palaea

    No full text
    Mortality and hatching time (day degrees) of whitefish (C. palaea) raised singly at one of different concentrations of 17alpha-ethinyloestradiol (EE2

    Geographically structured genomic diversity of non-human primate-infecting Treponema pallidum subsp. pertenue

    Get PDF
    Many non-human primate species in sub-Saharan Africa are infected with Treponema pallidum subsp. pertenue, the bacterium causing yaws in humans. In humans, yaws is often characterized by lesions of the extremities and face, while T. pallidum subsp. pallidum causes venereal syphilis and is typically characterized by primary lesions on the genital, anal or oral mucosae. It remains unclear whether other T. pallidum subspecies found in humans also occur in non-human primates and how the genomic diversity of non-human primate T. pallidum subsp. pertenue lineages is distributed across hosts and space. We observed orofacial and genital lesions in sooty mangabeys (Cercocebus atys) in Taï National Park, Côte d'Ivoire and collected swabs and biopsies from symptomatic animals. We also collected non-human primate bones from 8 species in Taï National Park and 16 species from 11 other sites across sub-Saharan Africa. Samples were screened for T. pallidum DNA using polymerase chain reactions (PCRs) and we used in-solution hybridization capture to sequence T. pallidum genomes. We generated three nearly complete T. pallidum genomes from biopsies and swabs and detected treponemal DNA in bones of six non-human primate species in five countries, allowing us to reconstruct three partial genomes. Phylogenomic analyses revealed that both orofacial and genital lesions in sooty mangabeys from Taï National Park were caused by T. pallidum subsp. pertenue. We showed that T. pallidum subsp. pertenue has infected non-human primates in Taï National Park for at least 28 years and has been present in two non-human primate species that had not been described as T. pallidum subsp. pertenue hosts in this ecosystem, western chimpanzees (Pan troglodytes verus) and western red colobus (Piliocolobus badius), complementing clinical evidence that started accumulating in Taï National Park in 2014. More broadly, simian T. pallidum subsp. pertenue strains did not form monophyletic clades based on host species or the symptoms caused, but rather clustered based on geography. Geographical clustering of T. pallidum subsp. pertenue genomes might be compatible with cross-species transmission of T. pallidum subsp. pertenue within ecosystems or environmental exposure, leading to the acquisition of closely related strains. Finally, we found no evidence for mutations that confer antimicrobial resistance
    corecore