188 research outputs found

    Predicting the substrate specificity of a glycosyltransferase implicated in the production of phenolic volatiles in tomato fruit

    Get PDF
    The volatile compounds that constitute the fruit aroma of ripe tomato (Solanum lycopersicum) are often sequestered in glycosylated form. A homology-based screen was used to identify the gene SlUGT5, which is a member of UDP-glycosyltransferase 72 family and shows specificity towards a range of substrates, including flavonoid, flavanols, hydroquinone, xenobiotics and chlorinated pollutants. SlUGT5 was shown to be expressed primarily in ripening fruit and flowers, and mapped to chromosome I in a region containing a QTL that affected the content of guaiacol and eugenol in tomato crosses. Recombinant SlUGT5 protein demonstrated significant activity towards guaiacol and eugenol, as well as benzyl alcohol and methyl salicylate; however, the highest in vitro activity and affinity was shown for hydroquinone and salicyl alcohol. NMR analysis identified isosalicin as the only product of salicyl alcohol glycosylation. Protein modelling and substrate docking analysis were used to assess the basis for the substrate specificity of SlUGT5. The analysis correctly predicted the interactions with SlUGT5 substrates, and also indicated that increased hydrogen bonding, due to the presence of a second hydrophilic group in methyl salicylate, guaiacol and hydroquinone, appeared to more favourably anchor these acceptors within the glycosylation site, leading to increased stability, higher activities and higher substrate affinities

    Selection of plants for roles in phytoremediation: the importance of glucosylation

    Get PDF
    Over-expression and transposon mutagenesis in root cultures of Arabidopsis thaliana demonstrated the importance of the family 1 glycosyltransferase UGT72B1 in catalysing the N-glucosylation of the persistent pollutant 3,4-dichloroaniline (DCA). In phytotoxicity studies with DCA in seedlings, over-expression of UGT72B1 enhanced sensitivity, whereas the knockouts were more resistant than the controls. In contrast, manipulating the expression of UGT72B1 had no effect on the O-glucosylation, or toxicity, of chlorophenols. When N-glucosylation was disrupted in plants, radioactivity derived from [14C]-DCA became covalently bound into high molecular weight insoluble material, principally associated with the lignin fraction. This suggested that insolubilization into stable cell wall components represented a more effective mechanism of DCA detoxification than the formation of N-glycosidic conjugates. A screen of plants used in remediation, identified low levels of N-glucosyltransferase activity in switchgrass and high activities in reed canary grass. When incubated with [14C]-DCA, reed canary grass plants accumulated soluble N-glycosides of DCA, whereas switchgrass formed insoluble residues. Consistent with the results obtained in studies with Arabidopsis, phytotoxicity trials with DCA demonstrated that switchgrass was more tolerant than reed canary grass. Our studies provide a new biochemical basis for selecting plants for useful remediating traits towards specific classes of pollutants

    A Cost-Effectiveness Analysis of Intradiscal Electrothermal Therapy (IDET) Compared with Circumferential Lumbar Fusion

    Get PDF
    STUDY DESIGN: Cost-effectiveness analysis. OBJECTIVE: To evaluate the cost-effectiveness of intradiscal electrothermal therapy (IDET) relative to circumferential lumbar fusion with femoral ring allograft (FRA) in UK. SUMMARY OF BACKGROUND DATA: Circumferential lumbar fusion is an established treatment for discogenic low back pain. However, IDET could be a cost-effective treatment alternative as it can be carried out as a day case. METHODS: Patient-level data were available for patients with discogenic low back pain treated with FRA (n=37) in a randomized trial of FRA vs titanium cage, and for patients recruited to a separate study evaluating the use of IDET (n=85). Both studies were carried out at a single institution in the UK. Patients were followed-up for 24 months, with data collected on low back disability (Oswestry Disability Index), back and leg pain (visual analogue scale), quality of life (SF-36), radiographic evaluations, and NHS resource use. Cost-effectiveness was measured by the incremental cost per quality-adjusted life year (QALY) gained. RESULTS: Both treatments produced statistically significant improvements in outcome at 24-month follow-up. NHS costs were significantly lower with IDET due to a shorter mean procedure time (377.4 minutes vs 49.9 minutes) and length of stay (7 days vs 1.2 days). At a threshold of £20,000 per QALY, the probability that IDET is cost-effective is high. CONCLUSIONS: Both treatments led to significant improvements in patient outcomes which were sustained for at least 24 months. Costs were lower with IDET, and for appropriate patients IDET is an effective and cost-effective treatment alternative. This article is protected by copyright. All rights reserved

    Discovery of active mouse, plant and fungal cytochrome P450s in endogenous proteomes and upon expression in planta

    Get PDF
    Eukaryotes produce a large number of cytochrome P450s that mediate the synthesis and degradation of diverse endogenous and exogenous metabolites. Yet, most of these P450s are uncharacterized and global tools to study these challenging, membrane-resident enzymes remain to be exploited. Here, we applied activity profiling of plant, mouse and fungal P450s with chemical probes that become reactive when oxidized by P450 enzymes. Identification by mass spectrometry revealed labeling of a wide range of active P450s, including six plant P450s, 40 mouse P450s and 13 P450s of the fungal wheat pathogen Zymoseptoria tritici. We next used transient expression of GFP-tagged P450s by agroinfiltration to show ER-targeting and NADPH-dependent, activity-based labeling of plant, mouse and fungal P450s. Both global profiling and transient expression can be used to detect a broad range of active P450s to study e.g. their regulation and discover selective inhibitors

    Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum

    Get PDF
    Following inoculation with the anthracnose pathogen Colletotrichum sublineolum, seedlings of the sorghum resistant cultivar SC748-5 showed more rapid and elevated accumulation of luteolin than the susceptible cultivar BTx623. On the other hand, apigenin was the major flavone detected in infected BTx623 seedlings. Luteolin was demonstrated to show stronger inhibition of spore germination of C. sublineolum than apigenin. Because of their pathogen-inducible and antifungal nature, both flavone aglycones are considered sorghum phytoalexins. The key enzyme responsible for flavone biosynthesis has not been characterized in monocots. A sorghum pathogen-inducible gene encoding a cytochrome P450 protein (CYP93G3) in the uncharacterized CYP93G subfamily was identified. Transgenic expression of the P450 gene in Arabidopsis demonstrated that the encoded protein is a functional flavone synthase (FNS) II in planta. The sorghum gene was then termed SbFNSII. It is a single-copy gene located on chromosome 2 and the first FNSII gene characterized in a monocot. Metabolite analysis by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in precursor ion scan mode revealed the accumulation of 2-hydroxynaringenin and 2-hydroxyeriodictyol hexosides in the transgenic Arabidopsis plants. Hence, SbFNSII appears to share a similar catalytic mechanism with the licorice and Medicago truncatula FNSIIs (CYP93B subfamily) by converting flavanones to flavone through the formation of 2-hydroxyflavanones

    Metabolic engineering of <i>Saccharomyces cerevisiae</i> for <i>de novo</i> production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties

    Get PDF
    Dihydrochalcones are plant secondary metabolites comprising molecules of significant commercial interest as antioxidants, antidiabetics, or sweeteners. To date, their heterologous biosynthesis in microorganisms has been achieved only by precursor feeding or as minor by-products in strains engineered for flavonoid production. Here, the native ScTSC13 was overexpressed in Saccharomyces cerevisiae to increase its side activity in reducing p-coumaroyl-CoA to p-dihydrocoumaroyl-CoA. De novo production of phloretin, the first committed dihydrochalcone, was achieved by co-expression of additional relevant pathway enzymes. Naringenin, a major by-product of the initial pathway, was practically eliminated by using a chalcone synthase from barley with unexpected substrate specificity. By further extension of the pathway from phloretin with decorating enzymes with known specificities for dihydrochalcones, and by exploiting substrate flexibility of enzymes involved in flavonoid biosynthesis, de novo production of the antioxidant molecule nothofagin, the antidiabetic molecule phlorizin, the sweet molecule naringin dihydrochalcone, and 3-hydroxyphloretin was achieve

    Industrial systems biology and its impact on synthetic biology of yeast cell factories

    Get PDF
    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. (C) 2015 Wiley Periodicals, Inc

    Identification and functional characterization of cDNAs coding for hydroxybenzoate/hydroxycinnamate glucosyltransferases co-expressed with genes related to proanthocyanidin biosynthesis

    Get PDF
    Grape proanthocyanidins (PAs) play a major role in the organoleptic properties of wine. They are accumulated mainly in grape skin and seeds during the early stages of berry development. Despite the recent progress in the identification of genes involved in PA biosynthesis, the mechanisms involved in subunit condensation, galloylation, or fine regulation of the spatio-temporal composition of grape berries in PAs are still not elucidated. Two Myb transcription factors, VvMybPA1 and VvMybPA2, controlling the PA pathway have recently been identified and ectopically over-expressed in an homologous system. In addition to already known PA genes, three genes coding for glucosyltransferases were significantly differentially expressed between hairy roots over-expressing VvMybPA1 or VvMybPA2 and control lines. The involvement of these genes in PA biosynthesis metabolism is unclear. The three glucosyltransferases display high sequence similarities with other plant glucosyltransferases able to catalyse the formation of glucose esters, which are important intermediate actors for the synthesis of different phenolic compounds. Studies of the in vitro properties of these three enzymes (Km, Vmax, substrate specificity, pH sensitivity) were performed through production of recombinant proteins in E. coli and demonstrated that they are able to catalyse the formation of 1-O-acyl-Glc esters of phenolic acids but are not active on flavonoids and stilbenes. The transcripts are expressed in the early stages of grape berry development, mainly in the berry skins and seeds. The results presented here suggest that these enzymes could be involved in vivo in PA galloylation or in the synthesis of hydroxycinnamic esters

    A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and Brassica napus

    Get PDF
    In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide contained glyphosate, which targets 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), while the other four herbicides contain different acetolactate synthase (ALS) inhibiting compounds. In contrast to the herbicide containing glyphosate, which affected only a few transcripts, many effects of the ALS inhibiting herbicides were revealed based on transcriptional changes related to ribosome biogenesis and translation, secondary metabolism, cell wall modification and growth. The expression pattern of a set of 101 genes provided a specific, composite signature that was distinct from other major stress responses and differentiated among herbicides targeting the same enzyme (ALS) or containing the same chemical class of active ingredient (sulfonylurea). A set of homologous genes could be identified in Brassica napus that exhibited a similar expression pattern and correctly distinguished exposure to the five herbicides. Our results show the ability of a limited number of genes to classify and differentiate responses to closely related herbicides in A. thaliana and B. napus and the transferability of a complex transcriptional signature across species
    corecore