74 research outputs found

    Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Fire Regimes Using Dendrochronology in Lithuania

    Get PDF
    Fire is an important natural disturbance and a driver of hemi-boreal forest successional trajectories, structural complexity, and biodiversity. Understanding the historic fire regime is an important step towards sustainable forest management. Focusing on Lithuania's hemi-boreal forests, we first mapped the potential natural fire regimes based on the relationship between site conditions, vegetation, and fire frequency using the ASIO model. The ASIO model revealed that all the fire frequency categories (Absent, Seldom, Intermittent, Often) are found in Lithuania. Scots pine forests dominated the often fire frequency category (92%). Secondly, focusing on a fire-prone forest landscape, Dzukija, we analyzed the fire occurrence of Scots pine forest types using dendrochronological records. We sampled and cross-dated 132 Scots pine samples with fire scars from four dry forest stands (n = 92) and four peatland forest stands (n = 40), respectively. In total, the fire history analysis revealed 455 fire scars and 213 fire events during the period of 1742-2019. The Weibull median fire intervals were 2.7 years (range 1-34) for the dry forest types and 6.3 years (range 1-27) for the peatland forest types. Analysis pre- and post-1950 showed the Weibull median fire interval increased from 2.2 to 7.2 for the dry forest types but decreased from 6.2 to 5.2. for the peatland forest types. A superposed epoch analysis revealed significant precipitation fluxes prior to the fire events after 1950. Thus, the Dzukija landscape of Lithuania has been strongly shaped by both human and naturally induced fires. The combination of theory (the ASIO model) with the examination of biological archives can be used to help guide sustainable forest management to emulate forest disturbances related to fire. As traditional forest management focusing on wood production has eliminated fire, and effectively simplified forest ecosystems, we recommend introducing educational programs to communicate the benefits and history of forest fires as well as adaptive management trials that use low-intensity prescribed burning of Scots pine stands

    Consensus Recommendations for Advancing Breast Cancer: Risk Identification and Screening in Ethnically Diverse Younger Women

    Get PDF
    A need exists for a breast cancer risk identification paradigm that utilizes relevant demographic, clinical, and other readily obtainable patient-specific data in order to provide individualized cancer risk assessment, direct screening efforts, and detect breast cancer at an early disease stage in historically underserved populations, such as younger women (under age 40) and minority populations, who represent a disproportionate number of military beneficiaries. Recognizing this unique need for military beneficiaries, a consensus panel was convened by the USA TATRC to review available evidence for individualized breast cancer risk assessment and screening in young (< 40), ethnically diverse women with an overall goal of improving care for military beneficiaries. In the process of review and discussion, it was determined to publish our findings as the panel believes that our recommendations have the potential to reduce health disparities in risk assessment, health promotion, disease prevention, and early cancer detection within and in other underserved populations outside of the military. This paper aims to provide clinicians with an overview of the clinical factors, evidence and recommendations that are being used to advance risk assessment and screening for breast cancer in the military

    Timing and duration of drought modulate tree growth response in pure and mixed stands of Scots pine and Norway spruce

    Get PDF
    Climate change is increasing the severity and frequency of droughts around the globe, leading to tree mortality that reduces production and provision of other ecosystem services. Recent studies show that growth of mixed stands may be more resilient to drought than pure stands. The two most economically important and widely distributed tree species in Europe are Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.), but little is known about their susceptibility to drought when coexist. This paper analyses the resilience (resistance, recovery rate and recovery time) at individual-tree level using a network of tree-ring collections from 22 sites along a climatic gradient from central Europe to Scandinavia. We aimed to identify differences in growth following drought between the two species and between mixed and pure stands, and how environmental variables (climate, topography and site location) and tree characteristics influence them. We found that both the timing and duration of drought drive the different responses between species and compositions. Norway spruce showed higher vulnerability to summer drought, with both lower resistance and a longer recovery time than Scots pine. Mixtures provided higher drought resistance for both species compared to pure stands, but the benefit decreases with the duration of the drought. Especially climate sensitive and old trees in climatically marginal sites were more affected by drought stress. Synthesis. Promoting Scots pine and mixed forests is a promising strategy for adapting European forests to climate change. However, if future droughts become longer, the advantage of mixed stands could disappear which would be especially negative for Norway spruce

    Mortality reduces overyielding in mixed Scots pine and European beech stands along a precipitation gradient in Europe

    Get PDF
    Many studies show that mixed species stands can have higher gross growth, or so-called overyielding, compared with monocultures. However, much less is known about mortality in mixed stands. Knowledge is lacking, for example, of how much of the gross growth is retained in the standing stock and how much is lost due to mor-tality. Here, we addressed this knowledge gap of mixed stand dynamics by evaluating 23 middle-aged, unthinned triplets of monospecific and mixed plots of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) repeatedly surveyed over 6-8 years throughout Europe. For explanation of technical terms in this abstract see Box 1.First, mixed stands produced more gross growth (+10%) but less net growth (-28%) compared with the weighted mean growth of monospecific stands. In monospecific stands, 73% of the gross growth was accumu-lated in the standing stock, whereas only 48% was accumulated in mixed stands. The gross overyielding of pine (2%) was lower than that of beech (18%). However, the net overyielding of beech was still 10%, whereas low growth and dropout of pine caused a substantial reduction from gross to net growth.Second, the mortality rates, the self-and alien-thinning strength, and the stem volume dropout were higher in mixed stands than monospecific stands. The main reason was the lower survival of pine, whereas beech persisted more similarly in mixed compared with monospecific stands.Third, we found a 10% higher stand density in mixed stands compared with monospecific stands at the first survey. This superiority decreased to 5% in the second survey.Fourth, the mixing proportion of Scots pine decreased from 46% to 44% between the first and second survey. The more than doubling of the segregation index (S) calculated by Pielou index (S increased from 0.2 to 0.5), indicated a strong tendency towards demixing due to pine.Fifth, we showed that with increasing water supply the dropout fraction of the gross growth in the mixture slightly decreased for pine, strongly increased for beech, and also increased for the stand as a whole. We discuss how the reduction of inter-specific competition by thinning may enable a continuous benefit of diversity and overyielding of mixed compared with monospecific stands of Scots pine and European beech

    Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.) – Site water supply and fertility modify the mixing effect

    Get PDF
    Tree species mixing has been widely promoted as a promising silvicultural tool for reducing drought stress. However, so far only a limited number of species combinations have been studied in detail, revealing inconsistent results. In this study, we analysed the effect of mixing Scots pine and oak (pedunculate oak and sessile oak) trees on their drought response along a comprehensive ecological gradient across Europe. The objective was to improve our knowledge of general drought response patterns of two fundamental European tree species in mixed versus monospecific stands. We focused on three null hypotheses: () tree drought response does not differ between Scots pine and oak, () tree drought response of Scots pine and oak is not affected by stand composition (mixture versus monoculture) and () tree drought response of Scots pine and oak in mixtures and monocultures is not modified by tree size or site conditions. To test the hypotheses, we analysed increment cores of Scots pine and oak, sampled in mixed and monospecific stands, covering a wide range of site conditions. We investigated resistance (the ability to maintain growth levels during drought), recovery (the ability to restore a level of growth after drought) and resilience (the capacity to recover to pre-drought growth levels), involving site-specific drought events that occurred between 1976 and 2015. In monocultures, oak showed a higher resistance and resilience than Scots pine, while recovery was lower. Scots pine in mixed stands exhibited a higher resistance, but also a lower recovery compared with Scots pine in monocultures. Mixing increased the resistance and resilience of oak. Ecological factors such as tree size, site water supply and site fertility were found to have significant effects on the drought response. In the case of Scots pine, resistance was increased by tree size, while recovery was lowered. Resistance of oak increased with site water supply. The observed mixing effect on the tree drought response of Scots pine and oak was in some cases modified by the site conditions studied. Positive mixing effects in terms of resistance and resilience of oak increased with site water supply, while the opposite was found regarding recovery. In contrast, site fertility lessened the positive mixing effect on the resistance of Scots pine. We hypothesise that the observed positive mixing effects under drought mainly result from water- and/or light-related species interactions that improve resource availability and uptake according to temporal and spatial variations in environmental conditions.This work was supported by the European Union as part of the ERA-Net SUMFOREST project REFORM – Mixed species forest management. Lowering risk, increasing resilience (2816ERA02S, PCIN2017-026) and the Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 778322. All contributors thank their national funding institutions for supporting the establishment, mensuration and analysis of the studied triplets. The first author wants to thank the German Federal Ministry of Food and Agriculture (BMEL) for financial support through the Federal Office for Agriculture and Food (BLE) (grant number 2816ERA02S), as well as the Bayerische Staatsforsten (BaySF) and Landesbetrieb Forst Brandenburg for providing suitable research sites. Research on the Lithuanian triplets (LT 1, LT 2) was made possible by the national funding institution Research Council of Lithuania (LMTLT) (agreement number S-SUMFOREST-17-1). The French site FR 1 belongs to the OPTMix experimental site (https://optmix.irstea.fr), which is supported annually by Ecofor, Allenvi, and the French national research infrastructure ANAEE-F. A special thank is due to Peter Biber for supporting the statistical analysis

    Mixing effects on Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) productivity along a climatic gradient across Europe

    Get PDF
    Mixed-species stands have been found to be more productive than would be expected from the performance of their component species in monocultures due to facilitation and complementarity between species, although these interactions depend on the combination of species present. Our study focuses on monospecific and mixed species stands of Scots pine and Norway spruce using 20 triplets established in nine countries along a climatic gradient across Europe. Differences in mean tree and stand characteristics, productivity and stand structure were assessed. Basal area increment in mixed stands was 8% higher than expected while volume increment was only 2% greater. Scots pine trees growing in mixed-species stands showed 11% larger quadratic mean diameter, 7% larger dominant diameter, 17% higher basal area and 25% higher stand volume than trees growing in mono specific stands. Norway spruce showed only a non-significant tendency to lower mean values of diameters, heights, basal area, as well standing volume in mixtures than monocultures. Stand structure indices differed between mixed stands and monocultures of Scots pine showing a greater stratification in mixed-species stands. Furthermore, the studied morphological traits showed little variability for trees growing in monospecific stands, except for diameter at breast height, crown length and crown length ratio. For trees growing in mixed stands, all the morphological traits of the trees were identified as different. Some of these morphological traits were associated with relative productivity. Nevertheless, relative productivity in mixed-species stands was not related to site conditions

    Predicting the spatial and temporal dynamics of species interactions in Fagus sylvatica and Pinus sylvestris forests across Europe

    Get PDF
    The productivity and functioning of mixed-species forests often differs from that of monocultures. However, the magnitude and direction of these differences are difficult to predict because species interactions can be modified by many potentially interacting climatic and edaphic conditions, stand structure and previous management. Process-based forest growth models could potentially be used to disentangle the effects of these factors and thereby improve our understanding of mixed forest functioning while facilitating their design and silvicultural management. However, to date, the predicted mixing effects of forest growth models have not been compared with measured mixing effects. In this study, 26 sites across Europe, each containing a mixture and monocultures of Fagus sylvatica and Pinus sylvestris, were used to calculate mixing effects on growth and yield and compare them with the mixing effects predicted by the forest growth model 3-PGmix. The climate and edaphic conditions, stand structures and ages varied greatly between sites. The model performed well when predicting the stem mass and total mass (and mixing effects on these components), with model efficiency that was usually >0.7. The model efficiency was lower for growth or smaller components such as foliage mass and root mass. The model was also used to predict how mixing effects would change along gradients in precipitation, temperature, potential available soil water, age, thinning intensity and soil fertility. The predicted patterns were consistent with measurements of mixing effects from published studies. The 3-PG model is a widely used management tool for monospecific stands and this study shows that 3-PGmix can be used to examine the dynamics of mixed-species stands and determine how they may need to be managed.This article is based upon work from COST Action EuMIXFOR, supported by COST (European Cooperation in Science and Technology). Funding for the Czech Republic site was provided by the MŠMT projects COST CZ – LD14063 and LD14074. All contributors thank their national funding institutions and the forest owners for agreeing to establish the plots and to measure and analyse data from the plots. The first author was funded by a Heisenberg Fellowship (FO 791/4-1) from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). Mário Pereira was supported by European Investment Funds by FEDER/COMPETE/POCI– Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT – Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013 as well as by project Interact-Integrative Research in Environment, Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, co-financed by FEDER/NORTE 2020

    Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L. ) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe

    Get PDF
    Mixing of complementary tree species may increase stand productivity, mitigate the effects of drought and other risks, and pave the way to forest production systems which may be more resource-use efficient and stable in the face of climate change. However, systematic empirical studies on mixing effects are still missing for many commercially important and widespread species combinations. Here we studied the growth of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) in mixed versus pure stands on 32 triplets located along a productivity gradient through Europe, reaching from Sweden to Bulgaria and from Spain to the Ukraine. Stand inventory and taking increment cores on the mainly 60-80 year-old trees and 0.02-1.55 ha sized, fully stocked plots provided insight how species mixing modifies the structure, dynamics and productivity compared with neighbouring pure stands. In mixture standing volume (+12 %), stand density (+20 %), basal area growth (+12 %), and stand volume growth (+8 %) were higher than the weighted mean of the neighbouring pure stands. Scots pine and European beech contributed rather equally to the overyielding and overdensity. In mixed stands mean diameter (+20 %) and height (+6 %) of Scots pine was ahead, while both diameter and height growth of European beech were behind (−8 %). The overyielding and overdensity were independent of the site index, the stand growth and yield, and climatic variables despite the wide variation in precipitation (520-1175 mm year−1), mean annual temperature (6-10.5 °C), and the drought index by de Martonne (28-61 mm °C−1) on the sites. Therefore, this species combination is potentially useful for increasing productivity across a wide range of site and climatic conditions. Given the significant overyielding of stand basal area growth but the absence of any relationship with site index and climatic variables, we hypothesize that the overyielding and overdensity results from several different types of interactions (light-, water-, and nutrient-related) that are all important in different circumstances. We discuss the relevance of the results for ecological theory and for the ongoing silvicultural transition from pure to mixed stands and their adaptation to climate change.The networking in this study has been sup-ported by COST Action FP1206 EuMIXFOR. All contributors thanktheir national funding institutions to establish, measure, and analysedata from the triplets. The first author also thanks the BayerischenStaatsforsten (BaySF) for supporting the establishment of the plots,the Bavarian State Ministry for Nutrition, Agriculture, and Forestryfor permanent support of the project W 07 ‘‘Long-term experimentalplots for forest growth and yield research’’ (# 7831-22209-2013) andthe German Science Foundation for providing the funds for the pro-jects PR 292/12-1 ‘‘Tree and stand-level growth reactions on droughtin mixed versus pure forests of Norway spruce and European beech’’.Thanks are also due to Ulrich Kern for the graphical artwork, and totwo anonymous reviewers for their constructive criticism
    corecore