892 research outputs found

    Predicting pilot behavior in medium-scale scenarios using game theory and reinforcement learning

    Get PDF
    Cataloged from PDF version of article.A key element to meet the continuing growth in air traffic is the increased use of automation. Decision support systems, computer-based information acquisition, trajectory planning systems, high-level graphic display systems, and all advisory systems are considered to be automation components related to next generation (NextGen) air space. Given a set of goals represented as reward functions, the actions of the players may be predicted. However, several challenges need to be overcome. First, determining how a player can attempt to maximize their reward function can be a difficult inverse problem. Second, players may not be able to perfectly maximize their reward functions. ADS-B technology can provide pilots the information, position, velocity, etc. of other aircraft. However, a pilot has limited ability to use all this information for his/her decision making. For this scenario, the authors model these pilot limitations by assuming that pilots can observe a limited section of the grid in front of them

    Verifying the Safety of a Flight-Critical System

    Full text link
    This paper describes our work on demonstrating verification technologies on a flight-critical system of realistic functionality, size, and complexity. Our work targeted a commercial aircraft control system named Transport Class Model (TCM), and involved several stages: formalizing and disambiguating requirements in collaboration with do- main experts; processing models for their use by formal verification tools; applying compositional techniques at the architectural and component level to scale verification. Performed in the context of a major NASA milestone, this study of formal verification in practice is one of the most challenging that our group has performed, and it took several person months to complete it. This paper describes the methodology that we followed and the lessons that we learned.Comment: 17 pages, 5 figure

    IKOS: A Framework for Static Analysis based on Abstract Interpretation (Tool Paper)

    Get PDF
    The RTCA standard (DO-178C) for developing avionic software and getting certification credits includes an extension (DO-333) that describes how developers can use static analysis in certification. In this paper, we give an overview of the IKOS static analysis framework that helps developing static analyses that are both precise and scalable. IKOS harnesses the power of Abstract Interpretation and makes it accessible to a larger class of static analysis developers by separating concerns such as code parsing, model development, abstract domain management, results management, and analysis strategy. The benefits of the approach is demonstrated by a buffer overflow analysis applied to flight control systems

    The unusual 2006 dwarf nova outburst of GK Perseii

    Full text link
    The 2006 outburst of GK Perseii differed significantly at optical and ultraviolet wavelengths from typical outbursts of this object. We present multi-wavelength (X-ray, UV and optical) Swift and AAVSO data, giving unprecedented broad-band coverage of the outburst, allowing us to follow the evolution of the longer-than-normal 2006 outburst across these wavelengths. In the optical and UV we see a triple-peaked morphology with maximum brightness ~1.5 magnitudes lower than in previous years. In contrast, the peak hard X-ray flux is the same as in previous outbursts. We resolve this dichotomy by demonstrating that the hard X-ray flux only accounts for a small fraction of the total energy liberated during accretion, and interpret the optical/UV outburst profile as arising from a series of heating and cooling waves traversing the disc, caused by its variable density profile.Comment: 9 pages, 7 figures, accepted for publication in MNRA

    The Proneural Molecular Signature Is Enriched in Oligodendrogliomas and Predicts Improved Survival among Diffuse Gliomas

    Get PDF
    The Cancer Genome Atlas Project (TCGA) has produced an extensive collection of ‘-omic’ data on glioblastoma (GBM), resulting in several key insights on expression signatures. Despite the richness of TCGA GBM data, the absence of lower grade gliomas in this data set prevents analysis genes related to progression and the uncovering of predictive signatures. A complementary dataset exists in the form of the NCI Repository for Molecular Brain Neoplasia Data (Rembrandt), which contains molecular and clinical data for diffuse gliomas across the full spectrum of histologic class and grade. Here we present an investigation of the significance of the TCGA consortium's expression classification when applied to Rembrandt gliomas. We demonstrate that the proneural signature predicts improved clinical outcome among 176 Rembrandt gliomas that includes all histologies and grades, including GBMs (log rank test p = 1.16e-6), but also among 75 grade II and grade III samples (p = 2.65e-4). This gene expression signature was enriched in tumors with oligodendroglioma histology and also predicted improved survival in this tumor type (n = 43, p = 1.25e-4). Thus, expression signatures identified in the TCGA analysis of GBMs also have intrinsic prognostic value for lower grade oligodendrogliomas, and likely represent important differences in tumor biology with implications for treatment and therapy. Integrated DNA and RNA analysis of low-grade and high-grade proneural gliomas identified increased expression and gene amplification of several genes including GLIS3, TGFB2, TNC, AURKA, and VEGFA in proneural GBMs, with corresponding loss of DLL3 and HEY2. Pathway analysis highlights the importance of the Notch and Hedgehog pathways in the proneural subtype. This demonstrates that the expression signatures identified in the TCGA analysis of GBMs also have intrinsic prognostic value for low-grade oligodendrogliomas, and likely represent important differences in tumor biology with implications for treatment and therapy

    Effects of Oxygen During Long-term Hypothermic Machine Perfusion in a Porcine Model of Kidney Donation After Circulatory Death

    Get PDF
    International audienceBackground:Hypothermic machine perfusion (HMP) has become standard care in many center’s to preserve kidneys donated after circulatory death (DCD). Despite a significant reduction in metabolism at low temperatures, remaining cellular activity requires oxygen. Since the role and safety of oxygen during HMP has not been fully clarified, its supply during HMP is not standard yet. This study investigates the effect of administering oxygen during HMP on renal function in a porcine DCD model.Methods: After 30 minutes of warm ischemia, porcine slaughterhouse kidneys were preserved for 24 hours by means of cold storage (CS), or HMP with Belzer Machine Perfusion Solution (UW- MPS) supplemented with no oxygen, 21% or 100% oxygen. Next, kidneys were reperfused for 4 hours in a normothermic machine perfusion (NMP) setup.Results:HMP resulted in significantly better kidney function during NMP. Thiobarbituric acid-reactive substances (TBARS), markers of oxidative stress, were significantly lower in HMP preserved kidneys. HMP preserved kidneys showed significantly lower ASAT and LDH levels compared to kidneys preserved by CS. No differences were found between the HMP groups subjected to different oxygen concentrations. ATP levels significantly improved during HMP when active oxygenation was applied.Conclusion:This study showed that preservation of DCD kidneys with HMP is superior to CS. Although the addition of oxygen to HMP did not result in significantly improved renal function, beneficial effects were found in terms of reduced oxidative stress and energy status. Oxygen addition proofed to be safe and did not show detrimental effects

    Spectroscopic and Photometric Study of the Contact Binary BO CVn

    Full text link
    We present the results of the study of the contact binary system BO CVn. We have obtained physical parameters of the components based on combined analysis of new, multi-color light curves and spectroscopic mass ratio. This is the first time the latter has been determined for this object. We derived the contact configuration for the system with a very high filling factor of about 88 percent. We were able to reproduce the observed light curve, namely the flat bottom of the secondary minimum, only if a third light has been added into the list of free parameters. The resulting third light contribution is significant, about 20-24 percent, while the absolute parameters of components are: M1=1.16, M2=0.39, R1=1.62 and R2=1.00 (in solar units). The O-C diagram shows an upward parabola which, under the conservative mass transfer assumption, would correspond to a mass transfer rate of dM/dt = 6.3 \times 10-8M\odot/yr, matter being transferred from the less massive component to the more massive one. No cyclic, short-period variations have been found in the O-C diagram (but longer-term variations remain a possibility)Comment: 16 pages, 5 figures, 5 tables, accepted for publication by New Astronom

    Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low - and high- grade glioma surgery

    Get PDF
    Biomarkers are indicators of biological processes and hold promise for the diagnosis and treatment of disease. Gliomas represent a heterogeneous group of brain tumors with marked intra- and inter-tumor variability. The extent of surgical resection is a significant factor influencing post-surgical recurrence and prognosis. Here, we used fluorescence and reflectance spectral signatures for in vivo quantification of multiple biomarkers during glioma surgery, with fluorescence contrast provided by exogenously-induced protoporphyrin IX (PpIX) following administration of 5-aminolevulinic acid. We performed light-transport modeling to quantify multiple biomarkers indicative of tumor biological processes, including the local concentration of PpIX and associated photoproducts, total hemoglobin concentration, oxygen saturation, and optical scattering parameters.We developed a diagnostic algorithm for intra-operative tissue delineation that accounts for the combined tumor-specific predictive capabilities of these quantitative biomarkers. Tumor tissue delineation achieved accuracies of up to 94% (specificity=94%, sensitivity=94%) across a range of glioma histologies beyond current state-of-the-art optical approaches, including state-of-the-art fluorescence image guidance. This multiple biomarker strategy opens the door to optical methods for surgical guidance that use quantification of well-established neoplastic processes. Future work would seek to validate the predictive power of this proof-of-concept study in a separate larger cohort of patients
    • 

    corecore