
IKOS: A Framework for Static Analysis based
on Abstract Interpretation (Tool Paper)

Guillaume Brat, Jorge A. Navas, Nija Shi, and Arnaud Venet

NASA Ames Research Center, Moffett Field, CA 94035

Abstract. The RTCA standard (DO-178C) for developing avionic soft-
ware and getting certification credits includes an extension (DO-333)
that describes how developers can use static analysis in certification. In
this paper, we give an overview of the IKOS static analysis framework
that helps developing static analyses that are both precise and scalable.
IKOS harnesses the power of Abstract Interpretation and makes it acces-
sible to a larger class of static analysis developers by separating concerns
such as code parsing, model development, abstract domain management,
results management, and analysis strategy. The benefits of the approach
is demonstrated by a buffer overflow analysis applied to flight control
systems.

1 Introduction

Our goal is to enable the use of static analysis for the certification of
avionic systems. The DO-333 extension to DO-178C lists Abstract In-
terpretation [4] as a possibility to obtain certification credits. Unfortu-
nately, there are few available commercial static analyzers based on Ab-
stract Interpretation. Moreover, they often lack precision and scalability
for C/C++ code, or, they are restricted to strict subsets of C. Our goal is
to define a framework that can be used to develop precise, scalable static
analyses based on Abstract Interpretation for flight software systems.

Abstract Interpretation [4] is a theoretical framework that provides a
methodology for constructing sound static analyses. It offers mathemat-
ical guarantee that all properties computed by the analyzer hold for all
possible execution paths of the program. The core idea behind this the-
ory is the careful use of the notion of approximation: all possible values
that a variable can take at a certain program point are approximated by
a set that can be compactly represented (e.g., an integer interval), thus
ensuring the soundness of the analysis. However, infeasible value assign-
ments of the variable may be introduced because of the approximation.
This may result into false alarms, where the analyzer detects a potential
problem at a statement when the program is actually safe. These false
alarms need to be as rare as possible; otherwise, it defeats the usefulness
of the analysis. Nevertheless, when a statement is deemed safe, it can
never cause an error, which is a key property for certification.

In this paper, we give an overview of IKOS [1] (Inference Kernel for Open
Static Analyzers), an open-source framework developed at the NASA

https://ntrs.nasa.gov/search.jsp?R=20140012995 2019-08-31T16:50:16+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42724262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. The IKOS framework architecture overview.

Ames Research Center that supports the development of precise and scal-
able static analyses. IKOS provides abstract interpretation concepts for
developing specialized analyzers, which helps drive down the number of
false positives without compromising scalability. Designing a specialized
analyzer using standard methods is long and difficult. IKOS facilitates
this process by factoring out most of the expertise required to write the
analyzer. The use of IKOS in developing precise and scalable static anal-
yses is demonstrated through the implementation of a buffer overflow
analysis and its application to flight control systems. Arrays and buffers
are pervasively employed in flight software (navigation, communication)
and errors are often very hard to catch during standard V&V activities,
like testing or code review.

2 Framework Overview

The IKOS framework, shown in Figure 1, offers capabilities to facilitate
the development and integration of the traditional elements of static an-
alyzers. IKOS relies on the ARBOS plugin framework for parsing the
source code, performing semantic resolution, and creating an intermedi-
ate representation (using the AR form) more suitable for analysis (i.e.,
semantic equations that need to be solved using fixpoint iterations).
Analyses are developed as ARBOS plugins using the Abstract Inter-
pretation concepts available in the IKOS library (a collection of abstract
domains and fixpoint iteration algorithms). Currently, results are be-
ing stored in permanent storage in the form of text files or in an SQL
database (SQLite). The SQL database is convenient to extract specific
information from the results. We can also visualize the results using an
external tool, called IkosView, which shows the location of the checks in
the source code with the traditional color coding: green for safe checks,
red for unsafe checks, and orange for warnings. In the following sections,
we will describe ARBOS and its AR form, then IKOS, and finally some
of the analyses we have developed.



2.1 The ARBOS Plugin Framework

ARBOS is a plugin framework that allows the definition of static analyses
using the AR form as intermediate representation. Currently, ARBOS
includes a front-end (based on LLVM [7]), which translates C/C++ code
into AR, the abstract representation of programs, and the APIs that
facilitate writing static analyses as ARBOS plugins. The workflow in
Figure 1 shows the various phases to obtain the AR representation of
the C/C++ source code to be analyzed.

2.2 Why LLVM?

LLVM [7] is essentially a high-level, platform-independent assembly lan-
guage. Although it is simpler to process than the abstract syntax tree of
a C/C++ program, it heavily relies on the static single assignment form
(SSA) which cannot be readily used to design an abstract interpreter.
The φ-nodes need to be eliminated and other inadequate constructs need
to be simplified using various LLVM transformation passes. An interme-
diate representation like CIL [9] is far more adapted to the design of
static analyzers based on Abstract Interpretation than LLVM, so why
choose LLVM in the first place?

The single most important issue facing the user of a static analysis tool is
getting the code through the tool’s parser. All commercial static analyz-
ers, sound or not, use their own parsers, which may not accept C/C++
dialects or idioms that are commonplace in the embedded world, includ-
ing flight systems. For example, in our experiments the code for the UAS
autopilot Paparazzi listed in Table 1 was rejected by all three commer-
cial static analyzers we had licenses for. Getting the application through
those tools would have required rewriting huge chunks of code, which
is unacceptable in general and for the certification of flight software in
particular, where code cannot be changed at all. However, Paparazzi
would compile without any problem when using the GCC compiler. As a
matter of fact, all the programs we have studied would compile without
any modification using GCC whereas they would require some modifi-
cations when using commercial tools. There is a special version of GCC
that has been modified so as to generate LLVM bitcode, which is why
we are using LLVM. CIL has its own front-end and trips when parsing
nonstandard code, very much like all other C/C++ front-ends but GCC.

2.3 The Abstract Representation

The Abstract Representation (AR) generated by ARBOS can be used
as an input to abstract interpreters implemented using IKOS as ARBOS
plugins. Compared to the LLVM Internal Representation (IR), the AR
takes a different angle on how to express the semantics of a C program.
For example, the SSA form is done away with, the instruction set is
more regular and the control flow is expressed in a declarative way using
nondeterministic choices and assertions rather than conditional branch



int a[10]; int i;
for (i = 0; i < 10; i++) { a[i] = i; }
a[i] = 10;

(a)

entry :
%a = alloca [10× i32]
br header

header :
%i.0 = φ [0, entry], [%2, body]
%3 = icmp slt %i.0, 9
br %3, body, tail

body :
%1 = gep %a, 0,%i.0
store %i.0,%1
%2 = add %i.0, 1
br header

tail :
%4 = gep %a, 0,%i.0
store 10,%4
br return

return : ret

entry :
%i.0 = 0

preheader :

headertrue :
%i.0 slt 9
%3 = 1

headerfalse :
%i.0 sge 9
%3 = 0

body :
%6 = mul 40, 0
%7 = mul 4,%i.0
%2 = add %6,%7
%1 = pshift %a,%2
store %i.0,%1
%i.0 = add %i.0, 1

tail :
%9 = mul 40, 0
%10 = mul 4,%i.0
%8 = add %9,%10
%4 = pshift %a,%8
store 10,%4

return : ret

(b) (c)

Fig. 2. Code snippet (a) with LLVM IR (b) and ARBOS AR (c) forms.

instructions. Due to space limitations, we cannot describe the entire AR
form in this paper. Instead, we will highlight the main differences between
the LLVM IR and AR using a simple example. It is worth noting that
there is no loss of expressiveness when translating the LLVM IR into AR.

Figure 2(a) shows a simple piece of code performing an array initializa-
tion with special treatment for the last element. The loop is not cor-
rectly written, which causes an out-of-bounds array access at the last
statement. This example is a redacted and simplified version of a prob-
lem identified in a real flight code during V&V activities. Figures 2(b)
and 2(c) show the LLVM IR and ARBOS AR forms, which have also
been simplified for readability. We will now go over the details of the
translation from the LLVM IR into AR.

In SSA form variables can only be assigned once, which requires the intro-
duction of φ-nodes to represent the values a variable can take at a merge
point in the control-flow graph. In Abstract Interpretation, a merge point
corresponds to the application of a join (or widening) operation in the
abstract domain. A φ-node represents a partial disjunction over some
program variables, which can be dealt with easily when considering non-
relational domains (like intervals). However, relational abstractions (like
polyhedra) describe properties over all program variables, which makes
the treatment of φ-nodes extremely challenging. Since IKOS is meant
to be a generic abstract interpretation framework, φ-nodes are removed
from the AR by inserting assignment instructions that simulate the effect
of the φ-nodes on the variables concerned.



In the LLVM IR, conditional branch instructions (br) are coupled with
Boolean instructions that return their result in a register (slt , sge). This
implies that processing the condition in the abstract domain (e.g., by us-
ing a linear constraint solver) should be done in conjunction with assign-
ing a discrete value to a variable (the result of the operation) and prop-
agating the invariant across basic blocks (to take care of both branches).
Since IKOS is a generic static analyzer, we need to decouple these as-
pects so as not to make the structure of the fixpoint iterator dependent
on any particular abstract domain. This is why branch instructions are
eliminated for the AR and replaced by nondeterministic choices (over
blocks headertrue and headerfalse in our example).

Finally, complex instructions in the LLVM IR that model pointer arith-
metic (gep) are replaced by atomic operations on the pointer offsets ex-
pressed in bytes (e.g., the pointer shift operation pshift). Once all these
transformations have been applied, the resulting AR form can be pro-
cessed by the generic algorithms of IKOS. Instantiating these algorithms
with the domain of intervals provides enough precision to statically re-
solve all array access checks and identify the error in the example.

2.4 The IKOS Library

IKOS is a development platform for static analyzers based on Abstract
Interpretation. IKOS is actually a large library of optimized Abstract
Interpretation algorithms. It is accessible through a highly generic API.
IKOS is meant to offer a cost-effective way of designing specialized static
analyzers. The API for abstract domains provide the usual services from
the abstract interpretation theory, i.e., abstract operators, comparison
operators, lattice elements such as bottom and top, and narrowing and
widening operators. Currently, IKOS offers implementations for the fol-
lowing numerical abstract domains: constants, intervals, arithmetic con-
gruences [3], octagons [8] and discrete symbolic domains. Other domains
are under development. IKOS also provides an API for fixpoint iterators.

3 Buffer Overflow Analysis

We have used IKOS to implement an interprocedural buffer-overflow
analyzer for avionic codes in C. The analysis represents less than 600 lines
of C++. This analysis is interprocedural and performs a full expansion of
function calls, very much like Astrée [5]. We have run our buffer overflow
analysis on a set of C flight control systems ranging in size from 35 KLOC
to 278 KLOC. The analysis was conducted on a MacBook Pro with a
2.8 GHz Intel Core i7 processor and 16 GB of memory. In our results
presented in Table 1, we include analysis times to give an idea of the
speed of the analysis. We did not try to optimize the analysis speed. We
focused on the precision, which is measured as the percentage of analysis
checks that are classified (as safe or unsafe) with certainty as opposed to
checks that yield warnings (there may or may not be a problem).



Code Size Analysis Time Precision

Paparazzi 35 KLOC 22s 99%

Gen2 22 KLOC 1m03s 98%

FLTz 144 KLOC 10m30s 91%

Arduplane 278 KLOC 6m30s 94%

Table 1. Buffer Out-of-Range Analysis Results.

The goal was to create an analysis that would yield less than 10% false
positives on flight control codes. The results on our test suite seem to
indicate that we have reached this goal since we always have a preci-
sion higher than 90%. The results also show that we have not sacrificed
analysis times for precision since all analyses are done in a matter of
minutes or less. We are in the process of identifying a large embedded
system code base so that we can truly characterize the scalability of the
analysis. Note that our measure of analysis time is really coarse since
we do not attempt to separate time spent analyzing the code from time
spent logging results to a file or a database. Our past experience with
C Global Surveyor (CGS) showed that logging results takes a significant
amount of time. So, we find our measured analysis times encouraging.

4 Related Work

The closest related work comes from tools relying on the abstract in-
terpretation framework, namely C Global Surveyor, CodeHawk, Astrée,
and PolySpace Verifier.

C Global Surveyor [10] (CGS) is the ancestor of IKOS, and, it has had
a large influence on the design of IKOS. However IKOS is a framework
to build analyzers when CGS is an analyzer. The emphasis in IKOS is to
factor out the difficult concepts (abstract domains, fixed-point iterators).
We also changed the front-end (GCC/LLVM instead of EDG) and the
database (SQLite instead of PostGReSQL). Finally, the precision of CGS
is not on par with IKOS’ precision since CGS generally produces about
20% warnings when IKOS is usually in the 1% to 2% range.

CodeHawk [6] is the closest tool to IKOS. It is also a framework for
developing analyses based on abstract interpretation. CodeHawk is a
commercial tool and little public data is available.

Astrée [5] was customized for specific Airbus codes. The impressive
results it achieves inspired us to enable the construction of specialized
static analyzers. The Airbus code is essentially composed of filters, which
means that Astrée focused on floating-point computation, which is not
yet addressed by IKOS. IKOS is addressing a much larger class of C
programs. In all honesty, we only can compare to the original version of
Astrée, not the current commercial one.

PolySpace Verifier was the first of this line of static analyzers based on
Abstract Interpretation. In many ways, it paved the way for the current



generation of tools. Polyspace Verifier was very successful in analyzing
Ada code but fell short for C and C++. In our own experience [2],
scalability was a big issue and the number of warnings was also important
(20% to 50% of all checks).

5 Conclusion

We have given an overview of IKOS, an open-source platform which
facilitates the development of static code analyzers based on Abstract
Interpretation. The front-end of IKOS relies on LLVM, but it can be
easily replaced by other front-ends since the analyses run on our own
intermediate representation. We demonstrated the precision and scala-
bility of IKOS-based analyzers with an interprocedural buffer overflow
analysis.

References

1. IKOS: Inference Kernel for Open Static Analyzers,
http://ti.arc.nasa.gov/opensource/ikos/

2. Brat, G., Klemm, R.: Static Analysis of the Mars Exploration Rover
Flight Software. In: Space Mission Challenge for Information Tech-
nology. pp. 321–326 (2003)

3. Bygde, S.: Abstract Interpretation and Abstract Domains with spe-
cial attention to the congruence domain. Master’s thesis, Mälardalen
University, Sweden (2006)

4. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints. In: POPL. pp. 238–252 (1977)

5. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., Rival, X.: The Astreé Analyzer. In: ESOP. pp. 21–30 (2005)

6. Kestrel Technology: CodeHawk, http://www.kestreltechnology.com

7. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In: CGO’04 (2004)

8. Miné, A.: The Octagon Abstract Domain. Higher-Order and Sym-
bolic Computation 19(1), 31–100 (2006)

9. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Interme-
diate Language and Tools for Analysis and Transformation of C
Programs. In: CC ’02. pp. 213–228 (2002)

10. Venet, A., Brat, G.P.: Precise and Efficient Static Array Bound
Checking for Large Embedded C Programs. In: PLDI. pp. 231–242
(2004)


