7 research outputs found

    Breast tumor PDXs are genetically plastic and correspond to a subset of aggressive cancers prone to relapse.

    Get PDF
    The authors wish to thank the personnel of the IRCM animal facility team, the histology (RHEM) platform, the Affymetrix platform of Montpellier and Dr Caroline Mollevi from the Biostatistics platform at ICM for their help in this project. The constant support of ICM and SIRIC Montpellier-Cancer is gratefully acknowledged.International audiencePatient derived xenografts (PDXs) are increasingly appreciated models in cancer research, particularly for preclinical testing, as they reflect the patient's tumor biology more accurately than cancer cell lines. We have established a collection of 20 breast PDXs and characterized their biological and clinical features, as well as their genetic stability. While most PDXs originated from triple negative breast cancers (70%), our collection comprised five ER + cases (25%). Remarkably, the tumors that produced PDXs derived from a subset of aggressive breast cancers with a high proportion of grade 3 tumors and reduced recurrence-free survival. Consistent with this, we found significant differences between the transcriptomic signatures of tumors that produced a PDX (Take) and those that did not (No Take). The PDXs faithfully recapitulate the histological features of their primary tumors, and retain an excellent conservation of molecular classification assignment and Copy Number Change (CNC). Furthermore, the CNC profiles of different PDXs established from the same tumor overlap significantly. However, a small fraction of CNCs in the primary tumor that correspond to oligoclonal events were gradually lost during sequential passaging, suggesting that the PDXs' genetic structure eventually stabilizes around a dominant clone present in the tumor of origin. Finally, de novo occurring genetic events covering up to 9% of the genome were found in only a minority of the PDXs, showing that PDXs have limited genetic instability. These data show that breast cancer PDXs represent a subset of aggressive tumors prone to relapse, and that despite of an excellent conservation of original features, they remain genetically dynamic elements

    Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts

    No full text
    International audienceWe investigated on colon cancer cells the effect of geraniol on thymidylate synthase and thymidine kinase expression, two enzymes related to 5-fluorouracil cytotoxicity. The anti-tumoral efficacy of geraniol and 5-fluorouracil were also evaluated on TC-118 human tumors transplanted in Swiss nu/nu mice. Geraniol (150 microM) but not 5-fluorouracil caused a 2-fold reduction of thymidylate synthase and thymidine kinase expression in cancer cells. In nude mice, the combined administration of 5-fluorouracil (20 mg/kg) and geraniol (150 mg/kg) caused a 53% reduction of the tumor volume, whereas a 26% reduction was obtained with geraniol alone, 5-fluorouracil alone showed no effect
    corecore