25 research outputs found

    Error Events Due to Island Size Variations in Bit Patterned Media

    Get PDF
    Control of the variations of island properties is one of the key challenges in fabricating Bit-Patterned Media for future storage systems. The presence on any variation in the size and position of an island has a detrimental effect on the ability to recover recorded data, particularly in the case of variation in island size. By analyzing error events when island size variations are present we have identified that these are more likely to be single-bit in nature. To understand the origins of these error events we have investigated the size and magnetization state of islands in the vicinity where a single-bit error event is encountered. It is shown that these error events occur due to particular combinations of island size and magnetization state for the three islands investigated. In every case the central island, from which the data bit is recovered in error, is small compared to the nominal island size. These results show that size variations must be controlled in the fabrication process in order to maximize the bit-error-rate performance of the read channel

    Tuning thermoelectric properties of Sb2_2Te3_3-AgSbTe2_2 nanocomposite thin film -- synergy of band engineering and heat transport modulation

    Full text link
    The present study demonstrates a large enhancement in the Seebeck coefficient and ultralow thermal conductivity (TE) in Sb2_2Te3_3-AgSbTe2_2 nanocomposite thin film. The addition of Ag leads to the in-situ formation of AgSbTe2_2 secondary phase nanoaggregates in the Sb2_2Te3_3 matrix during the growth resulting in a large Seebeck coefficient and reduction of the thermal conductivity. A series of samples with different amounts of minor AgSbTe2_2 phases are prepared to optimize the TE performance of Sb2_2Te3_3 thin films. Based on the experimental and theoretical evidence, it is concluded that a small concentration of Ag promotes the band flattening and induces a sharp resonate-like state deep inside the valence band of Sb2_2Te3_3, concurrently modifying the density of states (DOS) of the composite sample. In addition, the electrical potential barrier introduced by the band offset between the host TE matrix and the secondary phases promotes strong energy-dependent carrier scattering in the composite sample, which is also responsible for enhanced TE performance. A contemporary approach based on scanning thermal microscopy is performed to experimentally obtain thermal conductivity values of both the in-plane and cross-plane directions, showing a reduced in-plane thermal conductivity value by ~ 58% upon incorporating the AgSbTe2_2 phase in the Sb2_2Te3_3 matrix. Benefitting from the synergistic manipulation of electrical and thermal transport, a large ZT value of 2.2 is achieved at 375 K. The present study indicates the importance of a combined effect of band structure modification and energy-dependent charge carrier scattering along with reduced thermal conductivity for enhancing TE properties

    Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics

    Full text link
    The celebrated electronic properties of graphene have opened way for materials just one-atom-thick to be used in the post-silicon electronic era. An important milestone was the creation of heterostructures based on graphene and other two-dimensional (2D) crystals, which can be assembled in 3D stacks with atomic layer precision. These layered structures have already led to a range of fascinating physical phenomena, and also have been used in demonstrating a prototype field effect tunnelling transistor - a candidate for post-CMOS technology. The range of possible materials which could be incorporated into such stacks is very large. Indeed, there are many other materials where layers are linked by weak van der Waals forces, which can be exfoliated and combined together to create novel highly-tailored heterostructures. Here we describe a new generation of field effect vertical tunnelling transistors where 2D tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or CVD-grown graphene. Our devices have unprecedented current modulation exceeding one million at room temperature and can also operate on transparent and flexible substrates

    Atomically thin boron nitride: a tunnelling barrier for graphene devices

    Get PDF
    We investigate the electronic properties of heterostructures based on ultrathin hexagonal boron nitride (h-BN) crystalline layers sandwiched between two layers of graphene as well as other conducting materials (graphite, gold). The tunnel conductance depends exponentially on the number of h-BN atomic layers, down to a monolayer thickness. Exponential behaviour of I-V characteristics for graphene/BN/graphene and graphite/BN/graphite devices is determined mainly by the changes in the density of states with bias voltage in the electrodes. Conductive atomic force microscopy scans across h-BN terraces of different thickness reveal a high level of uniformity in the tunnel current. Our results demonstrate that atomically thin h-BN acts as a defect-free dielectric with a high breakdown field; it offers great potential for applications in tunnel devices and in field-effect transistors with a high carrier density in the conducting channel.Comment: 7 pages, 5 figure

    The LUX-ZEPLIN (LZ) Experiment

    Get PDF
    We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements

    The LUX-ZEPLIN (LZ) experiment

    Get PDF
    We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850’ level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements

    The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs

    Get PDF
    LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above 1.4×10−48cm2 for a WIMP mass of 40GeV/c2 and a 1000days exposure. LZ achieves this sensitivity through a combination of a large 5.6t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherently low radioactivity content. The LZ collaboration performed an extensive radioassay campaign over a period of six years to inform material selection for construction and provide an input to the experimental background model against which any possible signal excess may be evaluated. The campaign and its results are described in this paper. We present assays of dust and radon daughters depositing on the surface of components as well as cleanliness controls necessary to maintain background expectations through detector construction and assembly. Finally, examples from the campaign to highlight fixed contaminant radioassays for the LZ photomultiplier tubes, quality control and quality assurance procedures through fabrication, radon emanation measurements of major sub-systems, and bespoke detector systems to assay scintillator are presented

    The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs

    Get PDF

    Dependence of Write-Window on Write Error Rates in Bit Patterned Media

    No full text
    corecore