545 research outputs found

    Morc1 knockout evokes a depression-like phenotype in mice

    Get PDF
    Morc1 gene has recently been identified by a DNA methylation and genome-wide association study as a candidate gene for major depressive disorder related to early life stress in rodents, primates and humans. So far, no transgenic animal model has been established to validate these findings on a behavioral level. In the present study, we examined the effects of a Morc1 loss of function mutation in female C57BL/6N mice on behavioral correlates of mood disorders like the Forced Swim Test, the Learned Helplessness Paradigm, O-Maze and Dark-Light-Box. We could show that Morc1(-/-) mice display increased depressive-like behavior whereas no behavioral abnormalities regarding locomotor activity or anxiety-like behavior were detectable. CORT plasma levels did not differ significantly between Morc1(-/-) mice and their wildtype littermates, yet - surprisingly - total Bdnf mRNA-levels in the hippocampus were up-regulated in Morc1(-/-) animals. Although further work would be clarifying, Morc1(-/-) mice seem to be a promising epigenetically validated mouse model for depression associated with early life stress

    Sialoblastoma- long-term follow-up and remission for a rare salivary malignancy

    Get PDF
    Sialoblastoma is a rare salivary neoplasm which presents either congenitally or during early infancy. It was originally considered a benign neoplasm, however a number of reported cases have documented locoregional recurrence and distant metastases. Currently, there is no consensus on the appropriate treatment for this neoplasm. We report on long term follow-up of a patient with metastatic sialoblastoma, and a brief discussion of the possible treatment modalities currently being considered

    Plectin as a prognostic marker in non-metastatic oral squamous cell carcinoma

    Get PDF
    Background: Oral squamous cell carcinoma (OSCC) is associated with a poor 5-year survival rate. In general, patients diagnosed with small tumors have a fairly good prognosis, but some small tumors have an aggressive behavior leading to early death. There are at present no reliable prognostic biomarkers for oral cancers. Thus, to optimize treatment for the individual patient, there is a need for biomarkers that can predict tumor behavior. Method: In the present study the potential prognostic value of plectin was evaluated by a tissue microarray (TMA) based immunohistochemical analysis of primary tumor tissue obtained from a North Norwegian cohort of 115 patients diagnosed with OSCC. The expression of plectin was compared with clinicopathological variables and 5 year survival. Results: The statistical analysis revealed that low expression of plectin in the tumor cells predicted a favorable outcome for patients with non-metastatic disease (p = 0.008). Furthermore, the expression of plectin was found to correlate (p = 0.01) with the expression of uPAR, which we have previously found to be a potential prognostic marker for T1N0 tumors. Conclusions: Our results indicate that low expression of plectin predicts a favorable outcome for patients with non-metastatic OSCC and the expression level of plectin may therefore be used in the treatment stratification for patients with early stage disease

    An invasive adenocarcinoma of the accessory parotid gland: a rare example developing from a low-grade cribriform cystadenocarcinoma?

    Get PDF
    Low-grade cribriform cystadenocarcinoma (LGCCA) is a rare tumor of the salivary gland that exhibits clinically indolent behavior. In this paper, we present a case of invasive adenocarcinoma of the accessory parotid gland in a young male that exhibited histology suggestive of an association of LGCCA. A 27-year-old man presented with a subcutaneous tumor in his left cheek. The tumor was separated from the parotid gland and located on the masseter muscle. The tumor was resected, and the postoperative histological diagnosis was adenocarcinoma, not otherwise specified (ANOS). The tumor exhibited papillary-cystic and cribriform proliferation of the duct epithelium and obvious stromal infiltration. Some tumor nests were rimmed by myoepithelium positive for smooth muscle actin, p63, and cytokeratin 14, indicating the presence of intraductal components of the tumor. Tumor cells exhibited mild nuclear atypia, and some of them presented an apocrine-like appearance and had cytoplasmic PAS-positive/diastase-resistant granules and hemosiderin. Other cells had foamy cytoplasm with microvacuoles. Immunohistochemistry revealed that the almost all of the tumor cells were strongly positive for S-100. These histological findings suggest the possibility that ANOS might arise secondarily from LGCCA. This is an interesting case regarding the association between ANOS and LGCCA in oncogenesis

    Use of Organ Dysfunction as a Primary Outcome Variable Following Cecal Ligation and Puncture: Recommendations for Future Studies

    Get PDF
    Outcomes variables for research on sepsis have centered on mortality and changes in the host immune response. However, a recent task force (Sepsis-3) revised the definition of sepsis to life-threatening organ dysfunction caused by a dysregulated host response to infection. This new definition suggests that human studies should focus on organ dysfunction. The appropriate criteria for organ dysfunction in either human sepsis or animal models are, however, poorly delineated, limiting the potential for translation. Further, in many systems, the difference between dysfunction and injury may not be clear. In this review, we identify criteria for organ dysfunction and/or injury in human sepsis and in rodents subjected to cecal ligation and puncture (CLP), the most commonly used animal model of sepsis. We further examine instances where overlap between human sepsis and CLP is sufficient to identify translational endpoints. Additional verification may demonstrate that these endpoints are applicable to other animals and to other sepsis models, for example, pneumonia. We believe that the use of these proposed measures of organ dysfunction will facilitate mechanistic studies on the pathobiology of sepsis and enhance our ability to develop animal model platforms to evaluate therapeutic approaches to human sepsis

    Oncocytic carcinoma of the parotid gland with late cervical lymph node metastases: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Oncocytic carcinoma is a rare proliferation of cytomorphologically malignant oncocytes mainly found in glandular tissue, accounting for 0.5% of all epithelial salivary gland malignancies and 0.18% of all epithelial salivary gland tumors.</p> <p>Case presentation</p> <p>We report a case of oncocytic carcinoma arising in the parotid gland of a 65-year-old Caucasian man. Our patient initially underwent left superficial parotidectomy, including the removal of the mass. A close follow-up was made, and four years after first surgery cervical lymph node metastases were confirmed. Therefore, a complete parotidectomy and radical neck dissections were performed. There were no complications and no sign of recurrence after six months of follow-up.</p> <p>Conclusion</p> <p>Oncocytic carcinoma is an extremely rare malignancy in the salivary glands. Prophylactic neck dissection may be indicated for tumors larger than 2 cm in diameter (our patient's tumor was 2.5 cm at its greatest diameter). The clinical course of our patient, with the appearance of cervical lymph node metastases after four years of follow-up, supports this approach. Further investigation of the prognosis and correct treatment of patients with oncocytic carcinoma are required as more cases are reported.</p

    The effects of nitroxyl (HNO) on soluble guanylate cyclase activity: interactions at ferrous heme and cysteine thiols

    Get PDF
    It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme. Like NO, HNO activation appears to occur via interaction with the regulatory ferrous heme on sGC. Somewhat unexpectedly, HNO does not activate the ferric form of the enzyme. Finally, HNO-mediated cysteine thiol modification appears to also affect enzyme activity leading to inhibition. Thus, sGC activity can be regulated by HNO via interactions at both the regulatory heme and cysteine thiols

    Metabolism of phenol and hydroquinone to reactive products by macrophage peroxidase or purified prostaglandin H synthase.

    Get PDF
    Macrophages, an important cell-type of the bone marrow stroma, are possible targets of benzene toxicity because they contain relatively large amounts of prostaglandin H synthase (PHS), which is capable of metabolizing phenolic compounds to reactive species. PHS also catalyzes the production of prostaglandins, negative regulators of myelopoiesis. Studies indicate that the phenolic metabolites of benzene are oxidized in bone marrow to reactive products via peroxidases. With respect to macrophages, PHS peroxidase is implicated, as in vivo benzene-induced myelotoxicity is prevented by low doses of nonsteroidal anti-inflammatory agents, drugs that inhibit PHS. Incubations of either 14C-phenol or 14C-hydroquinone with a lysate of macrophages collected from mouse peritoneum (greater than 95% macrophages), resulted in an irreversible binding to protein that was dependent upon H2O2, incubation time, and concentration of radiolabel. Production of protein-bound metabolites from phenol or hydroquinone was inhibited by the peroxidase inhibitor aminotriazole. Protein binding from 14C-phenol also was inhibited by 8 microM hydroquinone, whereas binding from 14C-hydroquinone was stimulated by 5 mM phenol. The nucleophile cysteine inhibited protein binding of both phenol and hydroquinone and increased the formation of radiolabeled water-soluble metabolites. Similar to the macrophage lysate, purified PHS also catalyzed the conversion of phenol to metabolites that bound to protein and DNA; this activation was both H2O2- and arachidonic acid-dependent. These results indicate a role for macrophage peroxidase, possibly PHS peroxidase, in the conversion of phenol and hydroquinone to reactive metabolites and suggest that the macrophage should be considered when assessing the hematopoietic toxicity of benzene
    corecore