1,914 research outputs found

    Signatures of inflow motion in cores of massive star formation: Potential collapse candidates

    Full text link
    Using the IRAM 30 m telescope, a mapping survey in optically thick and thin lines was performed towards 46 high mass star-forming regions. The sample includes UC H{\sc ii} precursors and UC H{\sc ii} regions. Seventeen sources are found to show "blue profiles", the expected signature of collapsing cores. The excess of sources with blue over red profiles ([NblueN_{\rm blue} -- NredN_{\rm red}]/NtotalN_{\rm total}) is 29% in the HCO+^+ JJ=1--0 line, with a probability of 0.6% that this is caused by random fluctuations. UC H{\sc ii} regions show a higher excess (58%) than UC H{\sc ii} precursors (17%), indicating that material is still accreted after the onset of the UC H{\sc ii} phase. Similar differences in the excess of blue profiles as a function of evolutionary state are not observed in low mass star-forming regions. Thus, if confirmed for high mass star-forming sites, this would point at a fundamental difference between low- and high-mass star formation. Possible explanations are inadequate thermalization, stronger influence of outflows in massive early cores, larger gas reserves around massive stellar objects or different trigger mechanisms between low- and high- mass star formation

    The Carnivore Connection Hypothesis: Revisited

    Get PDF
    The “Carnivore Connection” hypothesizes that, during human evolution, a scarcity of dietary carbohydrate in diets with low plant : animal subsistence ratios led to insulin resistance providing a survival and reproductive advantage with selection of genes for insulin resistance. The selection pressure was relaxed at the beginning of the Agricultural Revolution when large quantities of cereals first entered human diets. The “Carnivore Connection” explains the high prevalence of intrinsic insulin resistance and type 2 diabetes in populations that transition rapidly from traditional diets with a low-glycemic load, to high-carbohydrate, high-glycemic index diets that characterize modern diets. Selection pressure has been relaxed longest in European populations, explaining a lower prevalence of insulin resistance and type 2 diabetes, despite recent exposure to famine and food scarcity. Increasing obesity and habitual consumption of high-glycemic-load diets worsens insulin resistance and increases the risk of type 2 diabetes in all populations

    The Importance of Dietary Carbohydrate in Human Evolution

    Get PDF
    We propose that plant foods containing high quantities of starch were essential for the evolution of the human phenotype during the Pleistocene. Although previous studies have highlighted a stone tool-mediated shift from primarily plant-based to primarily meat-based diets as critical in the development of the brain and other human traits, we argue that digestible carbohydrates were also necessary to accommodate the increased metabolic demands of a growing brain. Furthermore, we acknowledge the adaptive role cooking played in improving the digestibility and palatability of key carbohydrates. We provide evidence that cooked starch, a source of preformed glucose, greatly increased energy availability to human tissues with high glucose demands, such as the brain, red blood cells, and the developing fetus. We also highlight the auxiliary role copy number variation in the salivary amylase genes may have played in increasing the importance of starch in human evolution following the origins of cooking. Salivary amylases are largely ineffective on raw crystalline starch, but cooking substantially increases both their energy-yielding potential and glycemia. Although uncertainties remain regarding the antiquity of cooking and the origins of salivary amylase gene copy number variation, the hypothesis we present makes a testable prediction that these events are correlate

    Clumpy outer Galaxy molecular clouds and the steepening of the IMF

    Get PDF
    We report the results of high-resolution (~0.2 pc) CO(1-0) and CS(2-1) observations of the central regions of three star-forming molecular clouds in the far-outer Galaxy (~16 kpc from the Galactic Center): WB89 85 (Sh 2-127), WB89 380, and WB89 437. We used the BIMA array in combination with IRAM 30-m and NRAO 12-m observations. The GMC's in which the regions are embedded were studied by means of KOSMA 3-m CO(2-1) observations. The properties the CO and CS clumps are analyzed and compared with newly derived results of previously published single-dish measurements of local clouds (OrionB South and Rosette). We find that the slopes of the clump mass distributions (-1.28 and -1.49, for WB89 85 and WB89 380, respectively) are somewhat less steep than found for most local clouds, but similar to those of clouds which have been analyzed with the same clumpfind program. We investigate the clump stability by using the virial theorem, including all possible contributions (gravity, turbulence, magnetic fields, and pressure due to the interclump gas). It appears that under reasonable assumptions a combination of these forces would render most clumps stable. Comparing only gravity and turbulence, we find that in the far-outer Galaxy clouds, these forces are in equilibium (virial parameter alpha~1) for clumps down to the lowest masses found (a few Msol). For clumps in the local clouds alpha~1 only for clumps with masses larger than a few tens of Msol. Thus it appears that in these outer Galaxy clumps gravity is the dominant force down to a much lower mass than in local clouds, implying that gravitational collapse and star formation may occur more readily even in the smallest clumps. Although there are some caveats, due to the inhomogeneity of the data used, this might explain the apparently steeper IMF found in the outer Galaxy.Comment: 29 pages, including 9 tables, 21 figures. Accepted for Astron. Astrop

    International Tables of Glycemic Index and Glycemic Load Values: 2008

    Get PDF
    OBJECTIVE—To systematically tabulate published and unpublished sources of reliable glycemic index (GI) values

    Suppressed radio emission in supercluster galaxies: enhanced ram pressure in merging clusters?

    Full text link
    The environmental influence on the 1.4 GHz continuum radio emission of galaxies is analyzed in a 600 deg2 region of the local Universe containing the Shapley Supercluster (SSC). Galaxies in the FLASH and 6dFGS redshift surveys are cross-identified with NVSS radio sources, selected in a subsample doubly complete in volume and luminosity. Environmental effects are studied through a smoothed density field (normalized with random catalogs with the same survey edges and redshift selection function) and the distance to the nearest cluster (R/r200, where r200 is the virial radius, whose relation to the aperture velocity dispersion is quantified). The fraction of high radio loudness (R_K=L_radio/L_K) galaxies in the 10 Mpc Abell 3558 cluster complex at the core of the SSC (SSC-CR) is half as large than elsewhere. In the SSC-CR, R_K is anti-correlated with the density of the large-scale environment and correlated with R/r200: central brightest cluster galaxies (BCGs) in the SSC-CR are 10x less radio-loud than BCGs elsewhere, with signs of suppressed radio loudness in the SSC-CR also present beyond the BCGs, out to at least 0.3 r200. This correlation is nearly as strong as the tight correlation of L_K with R/r200 (K-luminosity segregation), inside the SSC-CR. The suppression of radio loudness in SSC-CR BCGs can be attributed to cluster-cluster mergers that destroy the cool core and thus the supply of gas to the central AGN. We analytically demonstrate that the low radio loudness of non-BCG galaxies within SSC-CR clusters cannot be explained by direct major galaxy mergers or rapid galaxy flyby collisions, but by the loss of gas supply through the enhanced ram pressure felt when these galaxies cross the shock front between the 2 merging clusters and are later subjected to the stronger wind from the 2nd cluster.Comment: Version consolidated with Erratum A&A 499, 4

    From Social Democracy back to No Ideology? - The Scottish National Party and Ideological Change in a Multi-level Electoral Setting

    Get PDF
    This article examines the development of ideology in the Scottish National Party since its formation in 1934, focusing on the recent period of the party’s history. It examines ideological development within the context of the party’s adaptation to multi-level elections and party system, especially in the decade since devolution began in 1999. It also provides a brief consideration of the party’s office success and governmental performance since 2007 to examine the effect of office on the SNP and its autonomy goal of Scottish independence

    Effect of the Glycemic Index of Carbohydrates on Acne vulgaris

    Get PDF
    Acne vulgaris may be improved by dietary factors that increase insulin sensitivity. We hypothesized that a low-glycemic index diet would improve facial acne severity and insulin sensitivity. Fifty-eight adolescent males (mean age ± standard deviation 16.5 ± 1.0 y and body mass index 23.1 ± 3.5 kg/m2) were alternately allocated to high or low glycemic index diets. Severity of inflammatory lesions on the face, insulin sensitivity (homeostasis modeling assessment of insulin resistance), androgens and insulin-like growth factor-1 and its binding proteins were assessed at baseline and at eight weeks, a period corresponding to the school term. Forty-three subjects (n = 23 low glycemic index and n = 20 high glycemic index) completed the study. Diets differed significantly in glycemic index (mean ± standard error of the mean, low glycemic index 51 ± 1 vs. high glycemic index 61 ± 2, p = 0.0002), but not in macronutrient distribution or fiber content. Facial acne improved on both diets (low glycemic index −26 ± 6%, p = 0.0004 and high glycemic index −16 ± 7%, p = 0.01), but differences between diets did not reach significance. Change in insulin sensitivity was not different between diets (low glycemic index 0.2 ± 0.1 and high glycemic index 0.1 ± 0.1, p = 0.60) and did not correlate with change in acne severity (Pearson correlation r = −0.196, p = 0.244). Longer time frames, greater reductions in glycemic load or/and weight loss may be necessary to detect improvements in acne among adolescent boys
    corecore