111 research outputs found

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Genome-Wide Fitness and Expression Profiling Implicate Mga2 in Adaptation to Hydrogen Peroxide

    Get PDF
    Caloric restriction extends lifespan, an effect once thought to involve attenuation of reactive oxygen species (ROS) generated by aerobic metabolism. However, recent evidence suggests that caloric restriction may in fact raise ROS levels, which in turn provides protection from acute doses of oxidant through a process called adaptation. To shed light on the molecular mechanisms of adaptation, we designed a series of genome-wide deletion fitness and mRNA expression screens to identify genes involved in adaptation to hydrogen peroxide. Combined with known transcriptional interactions, the integrated data implicate Yap1 and Skn7 as central transcription factors of both the adaptive and acute oxidative responses. They also identify the transcription factors Mga2 and Rox1 as active exclusively in the adaptive response and show that Mga2 is essential for adaptation. These findings are striking because Mga2 and Rox1 have been thought to control the response to hypoxic, not oxidative, conditions. Expression profiling of mga2Δ and rox1Δ knockouts shows that these factors most strongly regulate targets in ergosterol, fatty-acid, and zinc metabolic pathways. Direct quantitation of ergosterol reveals that its basal concentration indeed depends on Mga2, but that Mga2 is not required for the decrease in ergosterol observed during adaptation
    corecore