243 research outputs found

    Mucospheres produced by a mixotrophic protist impact ocean carbon cycling

    Get PDF
    Mixotrophic protists (unicellular eukaryotes) that engage in both phototrophy (photosynthesis) and phago-heterotrophy (engulfment of particles)-are predicted to contribute substantially to energy fluxes and marine biogeochemical cycles. However, their impact remains largely unquantified. Here we describe the sophisticated foraging strategy of a widespread mixotrophic dinoflagellate, involving the production of carbon-rich 'mucospheres' that attract, capture, and immobilise microbial prey facilitating their consumption. We provide a detailed characterisation of this previously undescribed behaviour and reveal that it represents an overlooked, yet quantitatively significant mechanism for oceanic carbon fluxes. Following feeding, the mucospheres laden with surplus prey are discarded and sink, contributing an estimated 0.17-1.24 mg m-2 d-1 of particulate organic carbon, or 0.02-0.15 Gt to the biological pump annually, which represents 0.1-0.7% of the estimated total export from the euphotic zone. These findings demonstrate how the complex foraging behaviour of a single species of mixotrophic protist can disproportionally contribute to the vertical flux of carbon in the ocean

    Diatom Biogeography, Temporal Dynamics, and Links to Bacterioplankton across Seven Oceanographic Time-Series Sites Spanning the Australian Continent.

    Full text link
    Diatom communities significantly influence ocean primary productivity and carbon cycling, but their spatial and temporal dynamics are highly heterogeneous and are governed by a complex diverse suite of abiotic and biotic factors. We examined the seasonal and biogeographical dynamics of diatom communities in Australian coastal waters using amplicon sequencing data (18S-16S rRNA gene) derived from a network of oceanographic time-series spanning the Australian continent. We demonstrate that diatom community composition in this region displays significant biogeography, with each site harbouring distinct community structures. Temperature and nutrients were identified as the key environmental contributors to differences in diatom communities at all sites, collectively explaining 21% of the variability observed in diatoms assemblages. However, specific groups of bacteria previously implicated in mutualistic ecological interactions with diatoms (Rhodobacteraceae, Flavobacteriaceae and Alteromonadaceae) also explained a further 4% of the spatial dynamics observed in diatom community structure. We also demonstrate that the two most temperate sites (Port Hacking and Maria Island) exhibited strong seasonality in diatom community and that at these sites, winter diatom communities co-occurred with higher proportion of Alteromonadaceae. In addition, we identified significant co-occurrence between specific diatom and bacterial amplicon sequence variants (ASVs), with members of the Roseobacter and Flavobacteria clades strongly correlated with some of the most abundant diatom genera (Skeletonema, Thalassiosira, and Cylindrotheca). We propose that some of these co-occurrences might be indicative of ecologically important interactions between diatoms and bacteria. Our analyses reveal that in addition to physico-chemical conditions (i.e., temperature, nutrients), the relative abundance of specific groups of bacteria appear to play an important role in shaping the spatial and temporal dynamics of marine diatom communities

    Microvolume DNA extraction methods for microscale amplicon and metagenomic studies

    Full text link
    Investigating the composition and metabolic capacity of aquatic microbial assemblages usually requires the filtration of multi-litre samples, which are up to 1 million-fold larger than the microenvironments within which microbes are predicted to be spatially organised. To determine if community profiles can be reliably generated from microlitre volumes, we sampled seawater at a coastal and an oceanic site, filtered and homogenised them, and extracted DNA from bulk samples (2 L) and microvolumes (100, 10 and 1 μL) using two new approaches. These microvolume DNA extraction methods involve either physical or chemical lysis (through pH/thermal shock and lytic enzymes/surfactants, respectively), directly followed by the capture of DNA on magnetic beads. Downstream analysis of extracted DNA using both amplicon sequencing and metagenomics, revealed strong correlation with standard large volume approaches, demonstrating the fidelity of taxonomic and functional profiles of microbial communities in as little as 1 μL of seawater. This volume is six orders of magnitude smaller than most standard operating procedures for marine metagenomics, which will allow precise sampling of the heterogenous landscape that microbes inhabit

    Bioinformatics in Italy: BITS2011, the Eighth Annual Meeting of the Italian Society of Bioinformatics

    Get PDF
    The BITS2011 meeting, held in Pisa on June 20-22, 2011, brought together more than 120 Italian researchers working in the field of Bioinformatics, as well as students in Bioinformatics, Computational Biology, Biology, Computer Sciences, and Engineering, representing a landscape of Italian bioinformatics research

    Screening the medicines for Malaria Venture "Malaria Box" against the Plasmodium falciparum aminopeptidases, M1, M17 and M18

    Get PDF
    Malaria is a parasitic disease that remains a global health burden. The ability of the parasite to rapidly develop resistance to therapeutics drives an urgent need for the delivery of new drugs. The Medicines for Malaria Venture have compounds known for their antimalarial ac- tivity, but not necessarily the molecular targets. In this study, we assess the ability of the “MMV 400” compounds to inhibit the activity of three metalloaminopeptidases from Plasmo- dium falciparum, PfA-M1, PfA-M17 and PfM18 AAP. We have developed a multiplex assay system to allow rapid primary screening of compounds against all three metalloaminopepti- dases, followed by detailed analysis of promising compounds. Our results show that there were no PfM18AAP inhibitors, whereas two moderate inhibitors of the neutral aminopepti- dases PfA-M1 and PfA-M17 were identified. Further investigation through structure-activity relationship studies and molecular docking suggest that these compounds are competitive inhibitors with novel binding mechanisms, acting through either non-classical zinc coordina- tion or independently of zinc binding altogether. Although it is unlikely that inhibition of PfA- M1 and/or PfA-M17 is the primary mechanism responsible for the antiplasmodial activity re- ported for these compounds, their detailed characterization, as presented in this work, pave the way for their further optimization as a novel class of dual PfA-M1/PfA-M17 inhibitors uti- lising non-classical zinc binding groups

    Determination of angiotensin I-converting enzyme activity in equine blood: lack of agreement between methods of analysis

    Get PDF
    Angiotensin-I converting enzyme (ACE) is a key regulator of blood pressure, electrolytes and fluid homeostasis through conversion of angiotensin I into angiotensin II. Recently, a genetic polymorphism of the ACE gene, which accounts for 47% of the variation of ACE activity in blood, has been advocated as a biomarker of athletic aptitude. Different methods of analysis and determination of ACE activity in plasma have been used in human and equine research without a consensus of a "gold standard" method. Different methods have often been used interchangeably or cited as being comparable in the existing literature; however, the actual agreement between assays has not been investigated. Therefore, in this study, we evaluated the level of agreement between three different assays using equine plasma obtained from 29 horses. Two spectrophotometric assays using Furylacryloyl-phenylalanyl-glycyl-glycine as substrate and one fluorimetric assay utilizing o-aminobenzoic acid-FRK-(Dnp)P-OH were employed. The results revealed that the measurements from the different assays were not in agreement, indicating that the methods should not be used interchangeably for measurement of equine ACE activity. Rather, a single method of analysis should be adopted to achieve comparable results and critical appraisal of the literature is needed when attempting to compare results obtained from different assays

    Synthesis, Antimicrobial and Antiproliferative Activity of Novel Silver(I) Tris(pyrazolyl)methanesulfonateand 1,3,5-Triaza-7-phosphadamantane Complexes

    Get PDF
    Five new silver(I) complexes of formulas [Ag(Tpms)] (1), [Ag(Tpms)-(PPh3)] (2), [Ag(Tpms)(PCy3)] (3), [Ag(PTA)][BF4] (4), and [Ag(Tpms)(PTA)] (5) {Tpms = tris(pyrazol-1-yl)methanesulfonate, PPh3 = triphenylphosphane, PCy3 = tricyclohexylphosphane, PTA = 1,3,5-triaza-7-phosphaadamantane) have been synthesized and fully characterized by elemental analyses, H-1, C-13, and P-31 NMR, electrospray ionization mass spectrometry (ESI-MS), and IR spectroscopic techniques. The single crystal X-ray diffraction study of 3 shows the Tpms ligand acting in the N-3-facially coordinating mode, while in 2 and 5 a N2O-coordination is found, with the SO3 group bonded to silver and a pendant free pyrazolyl ring. Features of the tilting in the coordinated pyrazolyl rings in these cases suggest that this inequivalence is related with the cone angles of the phosphanes. A detailed study of antimycobacterial and antiproliferative properties of all compounds has been carried out. They were screened for their in vitro antimicrobial activities against the standard strains Enterococcus faecalis (ATCC 29922), Staphylococcus aureus (ATCC 25923), Streptococcus pneumoniae (ATCC 49619), Streptococcus pyogenes (SF37), Streptococcus sanguinis (SK36), Streptococcus mutans (UA1S9), Escherichia coli (ATCC 25922), and the fungus Candida albicans (ATCC 24443). Complexes 1-5 have been found to display effective antimicrobial activity against the series of bacteria and fungi, and some of them are potential candidates for antiseptic or disinfectant drugs. Interaction of Ag complexes with deoxyribonucleic acid (DNA) has been studied by fluorescence spectroscopic techniques, using ethidium bromide (EB) as a fluorescence probe of DNA. The decrease in the fluorescence of DNA EB system on addition of Ag complexes shows that the fluorescence quenching of DNA EB complex occurs and compound 3 is particularly active. Complexes 1-5 exhibit pronounced antiproliferative activity against human malignant melanoma (A375) with an activity often higher than that of AgNO3, which has been used as a control, following the same order of activity inhibition on DNA, i.e., 3 > 2 > 1 > 5 > AgNO3 >> 4

    Two-pronged attack: dual inhibition of Plasmodium falciparum M1 and M17 metalloaminopeptidases by a novel series of hydroxamic acid-based inhibitors

    Get PDF
    Plasmodium parasites, the causative agents of malaria, have developed resistance to most of our current antimalarial therapies, including artemisinin combination therapies which are widely described as our last line of defense. Antimalarial agents with a novel mode of action are urgently required. Two Plasmodium falciparum aminopeptidases, PfA-M1 and PfA-M17, play crucial roles in the erythrocytic stage of infection and have been validated as potential antimalarial targets. Using compound-bound crystal structures of both enzymes, we have used a structure-guided approach to develop a novel series of inhibitors capable of potent inhibition of both PfA-M1 and PfA-M17 activity and parasite growth in culture. Herein we describe the design, synthesis, and evaluation of a series of hydroxamic acid-based inhibitors and demonstrate the compounds to be exciting new leads for the development of novel antimalarial therapeutics

    Coronary stenting and surgery: Perioperative management of antiplatelet therapy in patients undergoing surgery after coronary stent implantation [Stent coronarico e chirurgia: La gestione perioperatoria della terapia antiaggregante nel paziente portatore di stent coronarico candidato a intervento chirurgico]

    Get PDF
    The management of antiplatelet therapy in patients with coronary stents undergoing surgery is a growing clinical problem and often represents a matter of debate between cardiologists and surgeons. It has been estimated that about 4-8% of patients undergoing coronary stenting need to undergo surgery within the next year. Surgery represents one of the most common reasons for premature antiplatelet therapy discontinuation, which is associated with a significant increase in mortality and major adverse cardiac events, in particular stent thrombosis. In addition, surgery confers an additional risk of perioperative cardiac ischemic events, being high in these patients because of the pro-inflammatory and pro-thrombotic effects of surgery. Current international guidelines recommend to postpone non-urgent surgery for at least 6 weeks after bare metal stent implantation and for 6-12 months after drug-eluting stent implantation. However, these recommendations provide little support with regard to managing antiplatelet therapy in the perioperative phase in case of urgent operations and/or high hemorrhagic risk. Furthermore, ischemic and hemorrhagic risk is not defined in detail on the basis of clinical and procedural characteristics. Finally, guidelines shared with cardiologists and surgeons are lacking. The present consensus document provides practical recommendations on the management of antiplatelet therapy in the perioperative period in patients with coronary stents undergoing surgery. Cardiologists and surgeons contributed equally to its creation. An ischemic risk stratification has been provided on the basis of clinical and procedural data. All surgical interventions have been defined on the basis of the hemorrhagic risk. A consensus on the most appropriate antiplatelet regimen in the perioperative phase has been reached on the basis of the ischemic and hemorrhagic risk. Dual antiplatelet therapy should not be withdrawn for surgery at low bleeding risk, whereas aspirin should be continued perioperatively in the majority of surgical operations. In the event of interventions at high risk for both bleeding and ischemic events, when oral antiplatelet therapy withdrawal is required, perioperative treatment with short-acting intravenous glycoprotein IIb/IIIa inhibitors (tirofiban or eptifibatide) should be considered. \ua9 2012 Il Pensiero Scientifico Editore
    corecore