20 research outputs found

    Three-Dimensional Guided Zygomatic Implant Placement after Maxillectomy

    Get PDF
    Zygomatic implants are used in patients with maxillary defects to improve the retention and stability of obturator prostheses, thereby securing good oral function. Prosthetic-driven placement of zygomatic implants is even difficult for experienced surgeons, and with a free-hand approach, deviation from the preplanned implant positions is inevitable, thereby impeding immediate implant-retained obturation. A novel, digitalized workflow of surgical planning was used in 10 patients. Maxillectomy was performed with 3D-printed cutting, and drill guides were used for subsequent placement of zygomatic implants with immediate placement of implant-retained obturator prosthesis. The outcome parameters were the accuracy of implant positioning and the prosthetic fit of the obturator prosthesis in this one-stage procedure. Zygomatic implants (n = 28) were placed with good accuracy (mean deviation 1.73 ± 0.57 mm and 2.97 ± 1.38° 3D angle deviation), and in all cases, the obturator prosthesis fitted as pre-operatively planned. The 3D accuracy of the abutment positions was 1.58 ± 1.66 mm. The accuracy of the abutment position in the occlusal plane was 2.21 ± 1.33 mm, with a height accuracy of 1.32 ± 1.57 mm. This feasibility study shows that the application of these novel designed 3D-printed surgical guides results in predictable zygomatic implant placement and provides the possibility of immediate prosthetic rehabilitation in head and neck oncology patients after maxillectomy

    Novel finite element-based plate design for bridging mandibular defects:Reducing mechanical failure

    Get PDF
    Introduction: When the application of a free vascularised flap is not possible, a segmental mandibular defect is often reconstructed using a conventional reconstruction plate. Mechanical failure of such reconstructions is mostly caused by plate fracture and screw pull-out. This study aims to develop a reliable, mechanically superior, yet slender patient-specific reconstruction plate that reduces failure due to these causes. Patients and Methods: Eight patients were included in the study. Indications were as follows: fractured reconstruction plate (2), loosened screws (1) and primary reconstruction of a mandibular continuity defect (5). Failed conventional reconstructions were studied using finite element analysis (FEA). A 3D virtual surgical plan (3D-VSP) with a novel patient-specific (PS) titanium plate was developed for each patient. Postoperative CBCT scanning was performed to validate reconstruction accuracy. Results: All PS plates were placed accurately according to the 3D-VSP. Mean 3D screw entry point deviation was 1.54 mm (SD: 0.85, R: 0.10–3.19), and mean screw angular deviation was 5.76° (SD: 3.27, R: 1.26–16.62). FEA indicated decreased stress and screw pull-out inducing forces. No mechanical failures appeared (mean follow-up: 16 months, R: 7–29). Conclusion: Reconstructing mandibular continuity defects with bookshelf-reconstruction plates with FEA underpinning the design seems to reduce the risk of screw pull-out and plate fractures

    52 Genetic Loci Influencing Myocardial Mass.

    Get PDF
    BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets

    Refining Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Genetic Loci by Integrating Summary Data From Genome-wide Association, Gene Expression, and DNA Methylation Studies

    Get PDF
    Background: Recent genome-wide association studies (GWASs) identified the first genetic loci associated with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). The next step is to use these results to increase our understanding of the biological mechanisms involved. Most of the identified variants likely influence gene regulation. The aim of the current study is to shed light on the mechanisms underlying the genetic signals and prioritize genes by integrating GWAS results with gene expression and DNA methylation (DNAm) levels. Methods: We applied summary-data–based Mendelian randomization to integrate ADHD and ASD GWAS data with fetal brain expression and methylation quantitative trait loci, given the early onset of these disorders. We also analyzed expression and methylation quantitative trait loci datasets of adult brain and blood, as these provide increased statistical power. We subsequently used summary-data–based Mendelian randomization to investigate if the same variant influences both DNAm and gene expression levels. Results: We identified multiple gene expression and DNAm levels in fetal brain at chromosomes 1 and 17 that were associated with ADHD and ASD, respectively, through pleiotropy at shared genetic variants. The analyses in brain and blood showed additional associated gene expression and DNAm levels at the same and additional loci, likely because of increased statistical power. Several of the associated genes have not been identified in ADHD and ASD GWASs before. Conclusions: Our findings identified the genetic variants associated with ADHD and ASD that likely act through gene regulation. This facilitates prioritization of candidate genes for functional follow-up studies

    Engineering yeast for producing human glycoproteins : where are we now?

    No full text
    Yeast has advanced as an alternative for mammalian cell culture for the production of recombinant therapeutic glycoproteins. Engineered yeast strains not only allow to mimic the human N-glycosylation pathway but also specific types of human O-glycosylation. This is of great value for therapeutic protein production and indispensable to determine the structure-function relationships of glycans on recombinant proteins. However, as the technology matures, some limitations have come up that may hamper biomedical applications and must be considered to exploit the full potential of the unprecedented glycan homogeneity obtained on relevant biopharmaceuticals. In this special report, we focus on the recent developments in N- and O-glycosylation engineering in yeasts of industrial importance, to produce recombinant therapeutics with customized glycans

    Overexpression of delta-12 desaturase in the yeast Schwanniomyces occidentalis enhances the production of linoleic acid

    Get PDF
    The oleaginous yeast Schwanniomyces occidentalis was previously isolated because of its excellent suitability to convert lignocellulosic hydrolysates into triacyl glycerides: it is able to use a broad range of sugars and is able to tolerate high concentrations of lignocellulosic hydrolysate inhibitors. Compared to other oleaginous yeasts S. occidentalis however produces a low content of unsaturated fatty acids. We show here that the linoleic acid content can be significantly improved by (over)expression Δ12-desaturases derived from S. occidentalis and Fusarium moniliforme. Expression was stable for the homologous expression but decreased during heterologous expression. Both homologous and heterologous expression of mCherry-Δ12-desaturase led to a 4-fold increase in linoleic acid from 0.02 g/g biomass to 0.08 g/g biomass resulting in the production of 2.23 g/L and 2.05 g/L of linoleic acid.</p

    Overexpression of delta-12 desaturase in the yeast Schwanniomyces occidentalis enhances the production of linoleic acid

    No full text
    The oleaginous yeast Schwanniomyces occidentalis was previously isolated because of its excellent suitability to convert lignocellulosic hydrolysates into triacyl glycerides: it is able to use a broad range of sugars and is able to tolerate high concentrations of lignocellulosic hydrolysate inhibitors. Compared to other oleaginous yeasts S. occidentalis however produces a low content of unsaturated fatty acids. We show here that the linoleic acid content can be significantly improved by (over)expression Δ12-desaturases derived from S. occidentalis and Fusarium moniliforme. Expression was stable for the homologous expression but decreased during heterologous expression. Both homologous and heterologous expression of mCherry-Δ12-desaturase led to a 4-fold increase in linoleic acid from 0.02 g/g biomass to 0.08 g/g biomass resulting in the production of 2.23 g/L and 2.05 g/L of linoleic acid

    Study protocol of the randomised placebo-controlled GLOBE trial: GL P-1 f o r b ridging of hyperglyca e mia during cardiac surgery

    No full text
    Introduction Perioperative hyperglycaemia is common during cardiac surgery and associated with postoperative complications. Although intensive insulin therapy for glycaemic control can reduce complications, it carries the risk of hypoglycaemia. GLP-1 therapy has the potential to lower glucose without causing hypoglycaemia. We hypothesise that preoperative liraglutide (a synthetic GLP-1 analogue) will reduce the number of patients requiring insulin to achieve glucose values<8 mmol l -1 in the intraoperative period. Methods and analysis We designed a multi-centre randomised parallel placebo-controlled trial and aim to include 274 patients undergoing cardiac surgery, aged 18-80 years, with or without diabetes mellitus. Patients will receive 0.6 mg liraglutide or placebo on the evening before, and 1.2 mg liraglutide or placebo just prior to surgery. Blood glucose is measured hourly and controlled with an insulin bolus algorithm, with a glycaemic target between 4-8 mmol l Ăą -1. The primary outcome is the percentage of patients requiring insulin intraoperatively. Ethics and dissemination This study protocol has been approved by the medical ethics committee of the Academic Medical Centre (AMC) in Amsterdam and by the Dutch competent authority. The study is investigator-initiated and the AMC, as sponsor, will remain owner of all data and have all publication rights. Results will be submitted for publication in a peer-reviewed international medical journal. Trial registration number NTR6323; Pre-results
    corecore