63 research outputs found

    Cholangiocarcinoma: Epidemiology and risk factors

    Get PDF
    Cholangiocarcinoma (CCA) is a heterogeneous disease arising from a complex interaction between host-specific genetic background and multiple risk factors. Globally, CCA incidence rates exhibit geographical variation, with much higher incidence in parts of the Eastern world compared to the West. These differences are likely to reflect differences in geographical risk factors as well as genetic determinants. Of note, over the past few decades, the incidence rates of CCA appear to change and subtypes of CCA appear to show distinct epidemiological trends. These trends need to be interpreted with caution given the issues of diagnosis, recording and coding of subtypes of CCA. Epidemiological evidences suggest that in general population some risk factors are less frequent but associated with a higher CCA risk, while others are more common but associated with a lower risk. Moreover, while some risk factors are shared by intrahepatic and both extrahepatic forms, others seem more specific for one of the two forms. Currently some pathological conditions have been clearly associated with CCA development, and other conditions are emerging; however, while their impact in increasing CCA risk as single etiological factors has been provided in many studies, less is known when two or more risk factors co-occur in the same patient. Moreover, despite the advancements in the knowledge of CCA aetiology, in Western countries about 50% of cases are still diagnosed without any identifiable risk factor. It is therefore conceivable that other still undefined etiologic factors are responsible for the recent increase of CCA (especially iCCA) incidence worldwide

    An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs

    Get PDF
    Backgrounds & Aims Primary biliary cholangitis (PBC) is a chronic liver disease in which autoimmune destruction of the small intrahepatic bile ducts eventually leads to cirrhosis. Many patients have inadequate response to licensed medications, motivating the search for novel therapies. Previous genome-wide association studies (GWAS) and meta-analyses (GWMA) of PBC have identified numerous risk loci for this condition, providing insight into its aetiology. We undertook the largest GWMA of PBC to date, aiming to identify additional risk loci and prioritise candidate genes for in silico drug efficacy screening. Methods We combined new and existing genotype data for 10,516 cases and 20,772 controls from 5 European and 2 East Asian cohorts. Results We identified 56 genome-wide significant loci (20 novel) including 46 in European, 13 in Asian, and 41 in combined cohorts; and a 57th genome-wide significant locus (also novel) in conditional analysis of the European cohorts. Candidate genes at newly identified loci include FCRL3, INAVA, PRDM1, IRF7, CCR6, CD226, and IL12RB1, which each play key roles in immunity. Pathway analysis reiterated the likely importance of pattern recognition receptor and TNF signalling, JAK-STAT signalling, and differentiation of T helper (TH)1 and TH17 cells in the pathogenesis of this disease. Drug efficacy screening identified several medications predicted to be therapeutic in PBC, some of which are well-established in the treatment of other autoimmune disorders. Conclusions This study has identified additional risk loci for PBC, provided a hierarchy of agents that could be trialled in this condition, and emphasised the value of genetic and genomic approaches to drug discovery in complex disorders. Lay summary Primary biliary cholangitis (PBC) is a chronic liver disease that eventually leads to cirrhosis. In this study, we analysed genetic information from 10,516 people with PBC and 20,772 healthy individuals recruited in Canada, China, Italy, Japan, the UK, or the USA. We identified several genetic regions associated with PBC. Each of these regions contains several genes. For each region, we used diverse sources of evidence to help us choose the gene most likely to be involved in causing PBC. We used these ‘candidate genes’ to help us identify medications that are currently used for treatment of other conditions, which might also be useful for treatment of PBC

    Applications of molecular communications to medicine: A survey

    Get PDF
    In recent years, progresses in nanotechnology have established the foundations for implementing nanomachines capable of carrying out simple but significant tasks. Under this stimulus, researchers have been proposing various solutions for realizing nanoscale communications, considering both electromagnetic and biological communications. Their aim is to extend the capabilities of nanodevices, so as to enable the execution of more complex tasks by means of mutual coordination, achievable through communications. However, although most of these proposals show how devices can communicate at the nanoscales, they leave in the background specific applications of these new technologies. Thus, this paper shows an overview of the actual and potential applications that can rely on a specific class of such communications techniques, commonly referred to as molecular communications. In particular, we focus on health-related applications. This decision is due to the rapidly increasing interests of research communities and companies to minimally invasive, biocompatible, and targeted health-care solutions. Molecular communication techniques have actually the potentials of becoming the main technology for implementing advanced medical solution. Hence, in this paper we provide a taxonomy of potential applications, illustrate them in some detail, along with the existing open challenges for them to be actually deployed, and draw future perspectives

    Classical HLA-DRB1 and DPB1 alleles account for HLA associations with primary biliary cirrhosis

    Get PDF
    Susceptibility to primary biliary cirrhosis (PBC) is strongly associated with human leukocyte antigen (HLA)-region polymorphisms. To determine if associations can be explained by classical HLA determinants, we studied Italian, 676 cases and 1440 controls, genotyped with dense single-nucleotide polymorphisms (SNPs) for which classical HLA alleles and amino acids were imputed. Although previous genome-wide association studies and our results show stronger SNP associations near DQB1, we demonstrate that the HLA signals can be attributed to classical DRB1 and DPB1 genes. Strong support for the predominant role of DRB1 is provided by our conditional analyses. We also demonstrate an independent association of DPB1. Specific HLA-DRB1 genes (08,11 and14) account for most of the DRB1 association signal. Consistent with previous studies, DRB108 (P=1.59 710-11) was the strongest predisposing allele, whereas DRB111 (P=1.42 710-10) was protective. Additionally, DRB114 and the DPB1 association (DPB103:01; P=9.18 710-7) were predisposing risk alleles. No signal was observed in the HLA class 1 or class 3 regions. These findings better define the association of PBC with HLA and specifically support the role of classical HLA-DRB1 and DPB1 genes and alleles in susceptibility to PBC

    Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis

    Get PDF
    OBJECTIVE: Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile duct disease of largely unknown aetiology often leading to liver transplantation or death. Little is known about the genetic contribution to the severity and progression of PSC. The aim of this study is to identify genetic variants associated with PSC disease progression and development of complications. DESIGN: We collected standardised PSC subphenotypes in a large cohort of 3402 patients with PSC. After quality control, we combined 130 422 single nucleotide polymorphisms of all patients-obtained using the Illumina immunochip-with their disease subphenotypes. Using logistic regression and Cox proportional hazards models, we identified genetic variants associated with binary and time-to-event PSC subphenotypes. RESULTS: We identified genetic variant rs853974 to be associated with liver transplant-free survival (p=6.07×10(-9)). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5% to 59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 72.8% (95% CI 69.6% to 75.7%) for GG carriers at 10 years after PSC diagnosis. For the candidate gene in the region, RSPO3, we demonstrated expression in key liver-resident effector cells, such as human and murine cholangiocytes and human hepatic stellate cells. CONCLUSION: We present a large international PSC cohort, and report genetic loci associated with PSC disease progression. For liver transplant-free survival, we identified a genome-wide significant signal and demonstrated expression of the candidate gene RSPO3 in key liver-resident effector cells. This warrants further assessments of the role of this potential key PSC modifier gene

    Corrigendum to ‘An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs’ [J Hepatol 2021;75(3):572–581]

    Get PDF

    Comprehensive molecular characterization of the hippo signaling pathway in cancer

    Get PDF
    Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional “omic” data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era

    The evolving field of intrahepatic cholangiocarcinoma

    No full text

    Cholangiocarcinoma With FGFR

    No full text
    • 

    corecore