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ABSTRACT 

Objective Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile 

duct disease of largely unknown etiology often leading to liver transplantation or death. Little 

is known about the genetic contribution to the severity and progression of PSC. The aim of 

this study is to identify genetic variants associated with PSC disease progression and 

development of complications.  

Design We collected standardized PSC subphenotypes in a large cohort of 3,402 PSC 

patients. After quality control we combined 130,422 single nucleotide polymorphisms of all 

patients – obtained using the Illumina Immunochip – with their disease subphenotypes. 

Using logistic regression and Cox proportional hazards models we identified genetic variants 

associated with binary and time-to-event PSC subphenotypes.  

Results We identified genetic variant rs853974 to be associated with liver transplant-free 

survival (P = 6.07×10-9). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5-

59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 

72.8% (95% CI 69.6-75.7%) for GG carriers at ten years after PSC diagnosis. For the 

candidate gene in the region, RSPO3, we demonstrated expression in key liver-resident 

effector cells, such as human and murine cholangiocytes and human hepatic stellate cells. 

Conclusion We present a large international PSC patient cohort, and report genetic loci 

associated with PSC disease progression. For liver transplant-free survival, we identified a 

genome wide significant signal and demonstrated expression of the candidate gene RSPO3 

in key liver-resident effector cells. This warrants further assessments of the role of this 

potential key PSC modifier gene.  
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SUMMARY BOX 

What is already known about this subject:  

• Several case-control genome-wide association studies have revealed 20 

susceptibility loci for primary sclerosing cholangitis.  

• Little is known about the genetic contribution to the severity and progression of 

complex diseases in general and primary sclerosing cholangitis in particular. 

• RSPO3 plays a role in the activation of the canonical Wnt signaling pathway, which is 

involved in liver fibrosis. 

What are the new findings:  

• The genetic variant rs853974 is genome-wide significantly associated with liver 

transplant-free survival in primary sclerosing cholangitis. 

• Candidate gene RSPO3 is expressed in both murine and human cholangiocytes, and 

in human hepatic stellate cells.  

• Three new loci were found to be associated with time to cholangiocarcinoma in 

patients with primary sclerosing cholangitis. 

How might it impact on clinical practice in the foreseeable future? 

• Through its effect on liver fibrosis, RSPO3 could play an important role in PSC 

disease progression, and insight in its mechanism could lead to new therapeutic 

targets. 

• Furthermore, since we demonstrated that genetic variants are associated with PSC 

disease progression, genetics could provide a tool for risk stratification of patients 

with PSC in the future. 
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INTRODUCTION 

Primary sclerosing cholangitis (PSC) is a complex, cholestatic liver disease, in which chronic 

biliary inflammation and bile duct destruction leads to biliary fibrosis and liver cirrhosis, often 

in a slowly progressive manner.[1] PSC is characterized by a cholangiographic image of 

strictures interchanged with dilatations throughout the biliary tract. Reported incidence rates 

of PSC vary widely, with incidence rates of 0.91, 1.31, and 0.5 per 100,000 inhabitants per 

year for North America, Norway, and the Netherlands, respectively.[2,3] There is a male to 

female ratio of 2:1, and the disease can occur at any age, with a peak incidence around 40 

years.[3] There is a close association between PSC and inflammatory bowel disease (IBD), 

and PSC patients are subject to a 5-fold increased risk of developing colorectal carcinoma 

(CRC) when compared with the general population.[3] In addition, PSC carries an excess 

risk of cholangiocarcinoma (CCA) which seems to be unrelated to the disease duration and 

the presence of liver cirrhosis.[4] There is no effective medical therapy that can halt disease 

progression in PSC. The only curative option to date is liver transplantation.  

 The etiology of PSC is still largely unknown. The etiology is most likely to be 

multifactorial, in which the occurrence of PSC could be triggered by environmental factors in 

a genetic susceptible host.[5] The relationship between susceptibility to PSC and 

environmental factors has been studied for several risk factors, of which smoking has 

repeatedly been shown to be associated with a decreased risk of developing PSC, 

independent of its protective effect in ulcerative colitis.[6] 

 Already in 1983, the identification of associations between PSC and HLA-B8 of the 

human leukocyte antigen (HLA) complex located on chromosome 6 - harboring several 

genes that are involved in antigen presentation and are important in immunity - raised 

interest in the role of genetics in PSC.[7] This was amplified by a large Swedish study on 

PSC heritability demonstrated a nearly 4 to 17 times increased risk for first degree relatives 

of PSC patients to develop PSC, when compared with the general population.[8] The 

additional 3.3 times increased risk of ulcerative colitis, and the presence of at least one 

Page 11 of 67

https://mc.manuscriptcentral.com/gut

Gut

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Confidential: For Review Only

 9

concomitant immune mediated disease outside the liver and bowel in approximately 20 to 

25% of PSC patients, suggests a shared genetic component between these diseases.[8–10]  

Over the last 5 years, the application of genome-wide association studies has resulted in an 

increasing insight in the genetic architecture of PSC, with the identification of 19 non-HLA 

risk loci at the time of writing.[11–14]  

 Little is known about the genetic contribution to the severity and progression of 

complex diseases in general and PSC specifically. In Mendelian traits like cystic fibrosis and 

hemochromatosis, consortia efforts have led to the identification of robust and important 

modifier genes.[15,16] If genetic variants would be associated with PSC phenotypes, this 

could enable risk stratification of PSC patients according to disease behavior and would lead 

to insight into pathogenetic mechanisms associated to disease progression. Whilst 

translational research from susceptibility genes has yet to prove useful for the development 

of new drugs in complex disease, modifier genes may point toward pathways involved in 

disease progression amenable by pharmacological interventions. 

 The aim of this study is to identify genetic variants associated with PSC disease 

progression and development of complications, in a large, international, multicenter PSC 

cohort.  
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METHODS 

 

Study design and patients 

PSC patients previously recruited throughout Europe, the USA and Canada, and genotyped 

using the Immunochip by Liu et al.[13] were included. Subject recruitment was approved by 

the ethics committees or institutional review boards of all participating centers. Written 

informed consent was obtained from all participants. Patients of whom PSC diagnosis was 

revised after they were genotyped were excluded.  

 The following phenotypic data were collected for patient and disease characteristics: 

sex, date of birth, PSC subtype (small or large duct), date of PSC diagnosis, intra and-/or 

extra hepatic disease, dominant strictures, concomitant IBD and type of IBD, date of IBD 

diagnosis, and smoking status. Furthermore, follow-up data were collected for: date and 

cause of death, date and indication of liver transplantation, the occurrence and date of 

diagnosis of hepatocellular carcinoma (HCC), CCA, CRC, gallbladder carcinoma, and the 

occurrence and date of a colectomy.  

 PSC diagnosis was based on clinical, biochemical, cholangiographic and histologic 

criteria, as formulated by the EASL guidelines.[17] IBD diagnosis was scored based on 

accepted endoscopic, radiologic and histologic criteria.[18] 

 PSC related death was defined as death from liver failure, death from 

cholangiosepsis, death from cholangiocarcinoma or death from gallbladder carcinoma. The 

time-to-event phenotype liver transplant-free survival was defined as the time between PSC 

diagnosis and the composite endpoint of either liver transplantation or PSC related death. 

 We used genotype data of PSC patients as previously described.[13] Appendix A 

describes the quality control applied to this dataset.  A total of 130,422 single nucleotide 

polymorphisms (SNPs) for 3,402 PSC samples remained after quality control and were used 

in the analysis. 
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 11

 

Statistical analysis 

The age at PSC diagnosis was expressed as median value and interquartile range. 

Categorical variables were expressed as numbers and percentages based on non-missing 

values.  

 

Binary associations 

Binary associations were calculated using multiple logistic regression. We corrected for 

clinical covariates by adding them to the regression model. To determine which clinical 

covariates to correct for, we performed a backwards elimination procedure per binary 

phenotype. We started with the full model including sex, country, date of PSC diagnosis, 

established IBD diagnosis, and smoking status, and removed covariates from the model until 

the AIC (Akaike information criterion) stabilized. 

 

Time-to-event associations 

Cox proportional hazards regression was used to estimate the effect of genetic variants on 

time-to-event PSC subphenotypes. Clinical variables that were significantly associated with 

the time-to-event phenotype in univariable Cox regression analyses (P < 0.05) were entered 

into a multivariable Cox model alongside the genotype. To visualize the effect of genotype on 

time-to-event phenotypes, Kaplan-Meier survival estimates were plotted. (Methods described 

in supplementary appendix A). 

We used the SNP2HLA software[19] to impute classical HLA alleles from genotype 

data for HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-

DPB1 and their corresponding amino acid polymorphisms from the genotype data (Methods 

described in supplementary appendix A). 

 

Mouse experiments and in vitro experiments on the role of RSPO3 in PSC 
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Mouse experiments 

 

C57BL/6 (B6) mice were purchased from Charles River (Milan, Italy). Normal C57BL/6 mice 

were sacrificed at the age of 8-10 weeks. Organs were harvested and washed by cold 

phosphate buffered saline (PBS). Cholangiocytes were isolated both from normal mice (n=3) 

and from mice (n=3) fed 0.1%3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 4 weeks, 

as a model of sclerosing cholangitis.[20] Total RNA was extracted and sequenced on an 

Illumina HiSeq 2000 machine. See Appendix A for more details. 

 

In vitro experiments on human primary biliary tissue, cholangiocyte-like-cells and hepatic 

stellate cells 

Human primary biliary tissue was obtained from a liver and pancreas organ donor after 

obtaining informed consent from the donor's family. A section of the bile duct was excised 

and homogenized and RNA was extracted. Cholangiocyte-like-cells were generated from 

human induced pluripotent stem cells and cultured. RSPO3 expression was determined 

using qPCR and compared with the housekeeping gene using the 2−∆Ct method.[21] Next to 

that, we used previously published microarray data to verify RSPO3 expression.[22] The 

R/Bioconductor package limma [23] was used to evaluate differential expression between 

pairs of conditions (hIPSCs and CLCs and hIPSCs and PBD). A linear model fit was applied 

and p-values were corrected using the method of Benjamini and Hochberg.[24] Methods are 

further described in Appendix A. 

Primary human hepatic stellate cells were isolated and cultured from wedge sections 

of liver tissue, obtained from patients undergoing surgery at the Royal Free Hospital in 

London. Total RNA was extracted and retro-transcribed into cDNA, which was used for gene 

expression assessment with qPCR. Gene expression was compared with the housekeeping 

gene using the 2−∆Ct method.  
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RESULTS 

 

Patient characteristics and natural history 

Clinical characteristics of the PSC cohort are described in table 1. The cohort consisted of 

2881 patients from Europe and 521 patients from the United States and Canada 

(Supplementary table 1). A total of 2,185 (65%) patients were male, and the median age at 

PSC diagnosis was 38.6 years (IQR 28.0 - 50.1). Concomitant IBD was diagnosed in 2,390 

(75%) patients. The median follow-up was 8.7 years. In total 874 (26%) patients underwent 

liver transplantation and 181 (5%) patients died of PSC related causes. Over 11% of patients 

developed a malignancy, most often CCA (5.6%) or CRC (4.3%).  

 

Genetic associations with binary subphenotypes 

Genome-wide association analyses focusing on the occurrence of malignancy in PSC 

patients revealed several suggestive associations (Supplementary table 2). When comparing 

107 PSC-AIH patients with 3,159 PSC patients without AIH overlap, a strong genetic 

association in the HLA-DQB1 gene was identified (top SNP rs3891175, P = 4.6 × 10-11, OR = 

2.41). After imputation of the classical HLA alleles, we found that the alleles DQA1*05:01 and 

DQB1*02:01 were most significantly associated with PSC/AIH overlap (P-values of 3.8 × 10-

11 and 1.8 × 10-07). For other binary subphenotypes - small duct PSC, the occurrence of 

HCC, gallbladder carcinoma, and proctocolectomy – no genetic associations were found. 
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Table 1   Clinical characteristics of the PSC cohort consisting of 3,402 patients 

      

Variable Groups Number (%) 

Age at PSC diagnosis*   38.6y (28.0y - 50.1y) 

Sex male 2185 (64.7%) 

  female 1193 (35.3%) 

  missing 24 (0.7%) 

Main diagnosis PSC 3159 (94.6%) 

  small duct PSC 75 (2.2%) 

  PSC with AIH overlap 107 (3.2%) 

  missing 61 (1.8%) 

Liver transplantation Yes 874 (26.3%) 

  No 2444 (73.7%) 

  missing 84 (2.5%) 

Colectomy Yes 419 (12.6%) 

  No 2897 (87.4%) 

  missing 86 (2.5%) 

IBD No IBD 816 (25.5%) 

  Ulcerative colitis 1940 (60.5%) 

  Crohn's disease 357 (11.1%) 

  IBD-U 93 (2.9%) 

  missing 196 (5.8%) 

Cholangiocarcinoma Yes 188 (5.6%) 

  No 3147 (94.4%) 

  missing 67 (2.0%) 

Colorectal carcinoma Yes 127 (4.3%) 

  No 2822 (95.7%) 

  missing 453 (13.3%) 

Gall bladder carcinoma Yes 30 (1.0%) 

  No 2977 (99.0%) 

  missing 395 (11.6%) 

Hepatocellular carcinoma Yes 22 (0.7%) 

  No 2984 (99.3%) 

  missing 396 (11.6%) 

Smoking status Smoker 140 (6.0%) 

  Ex-Smoker 529 (22.7%) 

  Non-smoker 1657 (71.2%) 

  missing 1076 (31.6%) 

Death Non PSC related 47 (1.5%) 

  Liver failure 66 (2.1%) 

  Cholangiosepsis 18 (0.6%) 

  Gallbladder carcinoma 12 (0.4%) 

  Cholangiocarcinoma 85 (2.6%) 

  Hepatocellular carcinoma 6 (0.2%) 

  Colorectal carcinoma in case of coexisting IBD 3 (0.1%) 

  Alive 2977 (92.6%) 

 missing 188 (5.5%) 

   

*Values shown as median (IQR). 
Quantitative data are expressed as counts and percentages excluding missing data. 
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Genetic associations with time-to-event subphenotypes 

Next, we aimed to determine whether genetic variants are associated with important time-to-

event variables reflecting the PSC disease course, e.g. time between PSC diagnosis and the 

development of a carcinoma. For this, we developed a framework to perform Immunochip-

wide Cox proportional hazards analyses. We defined the liver transplant-free survival 

subphenotype as time from PSC diagnosis until liver transplantation or PSC related death. 

Univariable Cox regression analyses including clinical parameters showed statistically 

significant associations with the time to event endpoint transplant-free survival for sex, 

country, date of PSC diagnosis, established IBD diagnosis, and smoking status. Next, we 

tested 130,422 SNPs for association with liver transplant-free survival using multivariable 

Cox proportional hazards regression, including the genotype effect alongside the significant 

clinical co-variables. We found SNP rs853974 to be associated with liver transplant-free 

survival of PSC patients at genome wide significance (P = 6.07 × 10-9). Kaplan-Meier survival 

analysis showed a 50.9% (95% CI 41.5-59.5%) transplant-free survival for homozygous AA 

allele carriers of rs853974 compared with 72.8% (95% CI 69.6-75.7%) for GG carriers at ten 

years after PSC diagnosis (figure 1A).  AA homozygotes had a 2.14 (95% CI = 1.66-2.76) 

increased hazard, indicating a 2.14 larger relative risk for need for liver transplantation or for 

PSC related death compared to GG homozygotes. Figure 1B shows a regional plot of this 

observed association.  

SNP rs853974 is located on chromosome 6. We did not identify a direct functional 

effect of this SNP on gene expression or regulatory features (Appendix A). We hypothesized 

that neighbouring gene R-spondin 3 (RSPO3) would be the most likely positional candidate 

gene. The other neighboring gene, CENPW, has a fundamental role in kinetochore assembly 

and is required for normal chromosome organization and progress through mitosis and 

therefore not a good candidate. In addition to SNP rs853974, additional suggestive genetic 

associations with time-to-event phenotypes liver transplant-free survival and time to CCA 

were found (Supplementary table 3). 
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Expression of RSPO3 in key liver-resident effector cells 

To assess whether RSPO3 is expressed in disease relevant cells (cholangiocytes and 

hepatic stellate cells), we performed RNA-sequencing on healthy and cholestatic 

cholangiocytes and multiple organs derived from normal C57BL/6 mice. RSPO3 expression 

was 7 to 20 folds higher in cholangiocytes as compared with any of the organs. Furthermore, 

RSPO3 expression was higher in healthy cholangiocytes than in cholestatic cholangiocytes 

(figure 2A). 

 Next, using microarrays, we assessed expression of RSPO3 in human induced 

pluripotent stem cells, human induced pluripotent stem cell-derived cholangiocyte-like cells, 

and human primary bile duct samples. RSPO3 expression was significantly higher in 

cholangiocyte-like cells and primary bile duct cells compared with human induced pluripotent 

stem cells (figure 2B). This finding was confirmed by qPCR (figure 2C).  

 Since activated hepatic stellate cells are the main cells involved in liver fibrosis,[25] 

we also investigated expression of RSPO3 in human culture-activated hepatic stellate cells. 

We isolated, cultured and activated human hepatic stellate cells of three patients without 

PSC. Using qPCR we observed expression of the hepatic stellate cell marker gene 

Cytoglobin B, as well as expression of RSPO3 in all three subjects (figure 2D). We did not 

observe RSPO3 expression in human CD4 and CD8 T lymphocytes (data not shown).  
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DISCUSSION 

 

To date, very few disease-modifying genes have been identified in rare complex diseases. 

Collaboration within the international PSC Study group enabled the establishment of a cohort 

of unprecedented size, for an orphan disease such as PSC, enabling the investigation of 

genetic variation underlying the progression of PSC through time. Overall, it is a major 

challenge to determine genetic variants associated with survival, and only few genetic 

studies investigating this have been published.[26] We present a conceptually new method to 

determine associations between genetic variants and disease course, using genome wide 

multivariable Cox proportional hazards regression analyses. Here we identify a genome wide 

significant association between SNP rs853974 – located close to the RSPO3 gene – and 

liver transplant-free survival in PSC. Interestingly, this locus is not associated with PSC 

susceptibility and thus exemplifies different genetic regulation of disease susceptibility and 

disease progression. 

 This study is based on genotype data obtained using Illumina immunochip, a 

genotyping platform that densely covers genetic regions associated to immune mediated 

diseases. Use of GWAS arrays, that more uniformly cover genetic variants all over the 

genome, would have been ideal. However, a complete GWAS dataset for the entire 

international cohort was not available at the time of study. For that reason we started with the 

available immunochip data. Given the positive findings in this study, a similar study on 

GWAS arrays data could very well be of additional value. 

 For the binary phenotype of developing cholangiocarcinoma or not, we found an 

association at chromosome 5 at 150 Mb (Supplementary table 2). Of interest, this locus 

contains an established genetic association with Crohn's disease susceptibility in the 

autophagy gene IRGM. [27] For the phenotype of developing colorectal carcinoma or not we 

found an association at chromosome 14 at 35 Mb. This locus appeared not to be associated 

with sporadic colorectal cancer. 

 Since transplant-free survival is a combined and heterogeneous phenotype we 
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assessed to which extent the following three subgroups contribute to the association:  

1) transplanted patients with indication for transplantation "end stage liver disease" and 

patients died because of "liver failure"; 2) transplanted patients with indication for 

transplantation "cca/high grade dysplasia" and patients died because of "cca or gallbladder 

carcinoma"; and 3) transplanted patients with indication for transplantation "intolerable 

complaints/pruritus/recurrent cholangitis" and patients died of "cholangiosepsis". We 

observed a stronger contribution of subgroups 1 and 3 to the association, indicating that the 

underlying biological mechanism is more likely one involved in causing progression of liver 

disease and/or cholangitis or cholangiosepsis rather than a mechanism involved in cancer 

development. 

 R-spondin 3 is a member of the R-spondin protein family (R-spondin 1-4).[28] These 

proteins are secreted agonists of the canonical Wnt/β-catenin signaling pathway.[28] They 

activate the pathway leading to induced transcription of Wnt target genes. Wnt/β-catenin 

signaling plays a central role in embryogenesis, organogenesis and adult homeostasis, and 

is a critical regulator of stem cell maintenance.[29,30]  RSPO3 is a ligand of the Frizzled 8 

and LRP5/6 receptors.[28] In the canonical form of the Wnt pathway, binding of ligands to the 

Frizzled (Fzd) receptor and LRP5 or 6 co-receptors causes β-catenin to dephosphorylate in 

the cytoplasm. Accumulated β-catenin translocates to the nucleus where it binds to T cell 

factor (TCF)/Lymphoid enhancer-binding factor (LEF), causing transcription of Wnt target 

genes – such as Fibronectin, MMP-7, Twist, and Snail. These factors activate hepatic stellate 

cells and induce liver fibrosis. Blocking the Wnt signaling pathway using Dickkopf-1 (Dkk-1), 

a Wnt co-receptor antagonist, restores hepatic stellate cells quiescence in culture.[31] 

Hence, Wnt signaling is involved in both progression and regression of liver fibrosis, either by 

inhibiting or promoting activation and survival of hepatic stellate cells.[31,32] Also, RSPOs 

have been shown to facilitate hepatic stellate cell activation and promote hepatic 

fibrogenesis.[33] Here, we demonstrate that RSPO3 is expressed in key effector cells 

involved in the pathogenesis of PSC. Since we have shown that PSC patients that are 

homozygote AA carriers of rs853974 progress more rapidly towards PSC related death or 
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liver transplantation, RSPO3 can be regarded a plausible candidate gene to be involved in 

PSC disease progression. Hypothetically, PSC patients might benefit from reduction of 

RSPO3 or generally canonical Wnt signaling.  

 In an Immunochip analysis of the International IBD Genetics Consortium including 

over 75,000 individuals[34], an intronic SNP rs9491697 in RSPO3 (which is not in linkage 

disequilibrium with rs853974, r2 = 0.014) was identified to be associated with Crohn's disease 

(P = 3.79 × 10-10, OR = 1.077) but not with ulcerative colitis. Given the small number of 

Crohn's disease patients (n = 357) within the present study, the lack of linkage disequilibrium 

between the two “hit SNPs”, and the fact that our multivariate Cox model corrected for IBD-

status, the identified association signal does not seem to be driven by the co-occurrence of 

Crohn's disease in our cohort.  

 For several binary and time-to-event subphenotypes we found suggestive genetic 

associations. Two additional SNPs, rs1532244 on chromosome 3 and rs17649817 on 

chromosome 5, were suggestively associated with transplant-free survival. Furthermore, one 

SNP, rs7731017, was suggestively associated with the presence of CCA. We investigated 

whether any of the candidate genes in the locus overlapped with genes identified in tumour 

sequencing studies of cholangiocarcinoma. We did not find an overlap with the 32 genes 

reported to be significantly altered in intrahepatic, extrahepatic, and gallbladder cancer by 

Nakamura et al.[35] When comparing the genes in our CCA locus with 1146 genes 

containing non-synonymous somatic mutations in intrahepatic cholanciocarcinoma[36], we 

found that the SYNPO gene was both in the list of 1146 genes of the sequencing study as 

well as in the locus that we identified to be associated with the presence of CCA. There is 

little known about this gene and there is no connection with oncogenesis. Another gene, 

SP100, was found in this study to be in the locus associated with time to CCA and is also in 

the list of 1146 genes. SP100 is associated with autoimmune disease of the urogenital tract 

and also with PBC. Interestingly, anti-sp100 autoantibodies have been described for 

PBC[37]. The genetic association of SP100 with both PBC and the time to CCA within PSC 

patients as well as the existence of anti-sp100 autoantibodies makes this an interesting gene 
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for future follow-up studies.  

 When comparing PSC-AIH patients with PSC patients without AIH, we found a strong 

genetic association with PSC-AIH in the HLA-DQB1 gene. The identified variant was tagging 

the classical HLA haplotypes DQA1*05:01 and DQB1*02:01. These associations overlap the 

associations found by a previous genome-wide association study of AIH type 1 in The 

Netherlands,[38] suggesting that the genetic basis for AIH type 1 pathogenesis is similar for 

isolated AIH type 1 patients, compared with PSC-AIH patients. 

 This study is limited by the relatively small cohort size, when compared with other 

GWAS studies that incorporate tens of thousands of samples. The resulting lack of statistical 

power may have played a role in the binary analyses, in which suggestive hits were found for 

CCA and CRC but genome wide significance was not reached. However, PSC is a rare 

disease, and the present study has included patients recruited throughout the world in a 

joined effort. It is therefore not expected that a larger cohort of PSC cases will become 

available soon.   

 In conclusion, we present the largest association study of PSC genotypes with 

disease phenotypes to date. We identified several genetic variants associated with PSC 

disease course. Specifically, we report rs853974 to be genome-wide significantly associated 

with liver transplant-free survival in PSC. Findings of candidate gene RSPO3 being 

expressed in both mouse and human cholangiocytes and human activated hepatic stellate 

cells warrant further assessments of the role of this potential key PSC modifier gene.  
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Figure legends 

 

Figure 1: Association of genetic variants on chromosome 6 with transplant-free 

survival of PSC patients.  

(A) Kaplan-Meier curves of transplant-free survival. Patients are stratified according to their 

genotype for SNP rs853974. The P-value for genotype effect in the Cox proportional hazards 

model is P = 6.07 × 10-09. (B) Regional association plot for transplant-free survival. The Y-

axis shows the -log10(P-value) for genotype effect in the Cox proportional hazards model. 

 

Figure 2: RSPO3 expression in mouse cholangiocytes and in human cholangiocyte-

like-cells, primary bile duct and hepatic stellate cells  

(A) RNAseq analysis of RSPO3 expression in DDC induced cholestatic cholangiocytes, 

healthy cholangiocytes and multiple organs of normal C57BL/6 mice. FPKM: Fragments Per 

Kilobase of exon per Million mapped reads. (B) Microarray RSPO3 expression in human 

induced pluripotent stem cells (hiPSCs), cholangiocyte-like-cells (CLCs) and primary bile 

duct (PBD). RSPO3 expression is significantly increased in CLCs and in PBD compared to 

hiPSCs. n=3; error bars, standard deviation. Asterisks represent statistical significance 

(****adjusted P<0.0001, ***adjusted P<0.001, Benjamini and Hochberg corrected P-values). 

(C) Quantitative real time PCR (qPCR) analysis demonstrating the expression of RSPO3 in 

hiPSC-derived CLCs and PBD samples compared to expression in hiPSCs. Expression 

levels are fold changes compared to housekeeping gene HMDS calculated using the 2−∆Ct 

method. (D) Quantitative real time PCR (qPCR) analysis showing expression of RSPO3 and 

Cytoglobin B in three patients without PSC. Cytoglobin B mRNA expression was evaluated 

as specific HSC marker. Target genes were normalized using GAPDH as endogenous 

control and their relative expression was calculated with the 2−∆Ct method. 
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1. Supplementary Methods 
 

1.1 Genotype data 
 
Immunochip genotyping and quality control 
 
Here, we used genotype data of 3,789 PSC patients previously described.1 As quality control, SNPs with call rate 
below 80% were removed. Next, using PLINK v1.07 2, per sample genotype call rate and heterozygosity rate 
were determined. Outlying samples were identified using Aberrant.3 Also, for each pair of individuals with 
estimated identity by descent ≥ 0.9, the sample with the lower call rate was removed. Related individuals with 
identity by descent > 0.1875 and < 0.9 were kept. Samples of non-European ancestry were identified using PCA 
analysis and removed.4 Using samples from the 1000 Genomes Project5 principal components were calculated 
and PSC cases were projected onto them.1,6,7 3,402 PSC cases remained after quality control. As SNP quality 
control, SNPs were excluded that (i) had a MAF below 0.1%, (ii) had a Hardy-Weinberg equilibrium P < 1 × 
10−5, (iii) had a call rate below 98% or (iv) failed the non-random differential missing data rate test of PLINK 
between cases and controls at a threshold of P < 1 × 10−5. After cluster plot inspection, a total of 130,422 SNPs 
remained for analysis.  
 

1.2 Statistical and computational analyses  
 
Statistical analyses 
 
Binary associations were calculated using multiple logistic regression. We corrected for clinical covariates by 
adding them to the logistic regression model. To determine which clinical covariates to correct for, we 
performed a backwards elimination procedure for each binary phenotype. We started with the full model and 
removed covariates from the model until the AIC (Akaike information criterion) stabilized. 
 The time-to-event phenotype liver transplant-free survival was defined as the composite endpoint of 
liver transplantation or PSC related death (death from liver failure, death from cholangiosepsis, death from 
cholangiocarcinoma or death from gallbladder carcinoma). To determine whether clinical parameters have an 
effect on liver transplant-free survival, univariable Cox proportional hazards models were fitted including 
clinical parameters as covariates. Next, to determine associations between genotype and liver transplant-free 
survival, for all SNPs on the Immunochip after quality control, we fitted a Cox regression model including the 
significant clinical variables as well as genotype. Genotype was modeled as nominal variable. Associations with 
a P-value < 5.0 × 10-08 were considered significant, whereas associations with a P-value between 5.0 × 10-06 and 
5.0 × 10-08 were considered suggestive. Proportional hazard assumptions were judged using Therneau and 
Grambsch tests. After stratifying the IBD type (No IBD, CD, UC or IBD-U) and categorizing time of IBD 
diagnosis into five groups, the proportional hazard assumptions were met. To visualize the effect of genotype on 
time-to-event phenotypes, Kaplan-Meier survival estimates were plotted. Cox regression analyses were also 
performed for time to death, time to liver transplantation, time to CCA, time to CRC or time to HCC, time to gall 
bladder carcinoma and time to proctocolectomy. All time intervals started at the time of PSC diagnosis. 
 Association tests were performed in PLINK version 1.072. Survival analyses were done in R software 
version 3.1.3 (http://www.r-project.org). Genetic loci were defined as 250kb around the lead SNP and eventually 
extended to include all SNPs in LD with the lead SNP (r2 > 0.8). In case a locus contained no genes we 
investigated the closest neighbouring ones. 
 
Imputation of the HLA region 
 
Based on the Immunochip genotypes, we imputed classical HLA alleles for HLA-A, HLA-B, HLA-C, HLA-
DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-DPB1 and their corresponding amino acid 
polymorphisms, using a reference panel of 5,225 individuals of European descent, collected by the Type 1 
Diabetes Genetics Consortium and using SNP2HLA with default settings.8 This reference panel showed high 
imputation quality for the HLA region.8–10 
 
In silico functional analyses 
 
The Encyclopedia of DNA Elements (ENCODE)11 was searched using the UCSC Genome Browser.12 
Specifically, overlaps of SNPs with the following regulatory features were searched: DNaseI hypersensitivity 
sites, transcription factor binding sites, histone modification and DNA-polymerase sites. We tested whether 
associated variants showed an effect on gene expression levels of genes. For this we used an expression 
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quantitative trait loci (eQTL) study of non-transformed peripheral blood in 5,311 individuals 
(http://www.genenetwork.nl/bloodeqtlbrowser/)13 and we queried Single Tissue and Multi-tissue eQTL for all 
available tissues on the GTEx Portal (http://gtexportal.org), an online resource and associated tissue bank for the 
scientific community for studying the relationship between genetic variation and gene expression in human 
tissues.14 
 

1.3 RSPO3 expression in murine cholangiocytes and normal tissue 
 
Mice 
 
C57BL/6 (B6) mice were purchased from Charles River (Milan, Italy). The mice were housed in a Minimal 
Disease Unit at the animal facility at the Università Politecnica delle Marche, Ancona, Italy. All animal 
experiments were performed in compliance with local institution guidelines (Italian Ministry of Health). 
 
Tissues and cholangiocytes preparation 
 
Normal C57BL/6 mice were sacrificed at the age of 8-10 weeks. Brain, kidney, lung, pancreas, salivary-gland-
parotid, skin, skeletal, spleen, stomach, vagina, colon, duodenum, esophagus and ileum were harvested and 
washed by cold phosphate buffered saline (PBS). Cholangiocytes were isolated both from normal mice (n=3) 
and from mice (n=3) fed 0.1%3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 4 weeks, as a model of 
sclerosing cholangitis.15 Purification of cholangiocytes from mice was performed by immune-bead purification, 
as previously reported.16 
 
RNA sequencing 
 
Total RNA was extracted by TRIzol Reagent (Life Technologies Corporation, Woburn, MA). Libraries were 
prepared using TruSeq RNA (Illumina) reagents, and sequenced on 4 lanes of an Illumina HiSeq 2000 machine, 
using SBS v3 reagents (Illumina) to generate 50 bp single end reads. The reads then were aligned to the mouse 
genome reference sequence and annotations from Illumina built for UCSC mm10 (version of 2014_05_23) with 
the Tophat software (version 2.1.0) using default parameters without gene/transcript discovery. Gene expression 
levels were quantified and normalized using cuffquant and cuffnorm with default parameters from the software 
cufflinks (version 2.2.1). Fragments Per Kilobase of exon per Million mapped reads (FPKM) values were used 
as gene expression levels.  
 

1.4 RSPO3 expression in human primary biliary tissue and cholangiocyte-like-cells 
 
Human primary biliary tissue and cholangiocyte-like-cells culture 
 
Primary biliary tissue (primary bile duct, PBD) was obtained from a liver and pancreas organ donor after 
obtaining informed consent from the donor's family (REC reference number: 09/H0306/73). A section of the bile 
duct was excised and homogenized using a tissue homogenizer. RNA was extracted using a kit (Sigma-Aldrich), 
according to the manufacturer’s instructions. Cholangiocyte-like-cells (CLCs) were generated from human 
induced Pluripotent Stem Cells (hPSCs) and cultured as previously described.17 
 
Real-time PCR (qPCR) 
 
500ng of cellular RNA was reverse transcribed using Superscript II Reverse Transcriptase (Invitrogen). qPCR 
reaction mixtures were prepared using the SensiMix™ SYBR® & Fluorescein Kit (Bioline), according to the 
manufacturer’s instructions. The cDNA was denatured at 94°C for 5 minutes, followed by 40 cycles at 94°C for 
30 seconds, 60°C for 30 seconds, and 72°C for 30 seconds, and a final extension step at 72°C for 10 minutes. A 
Stratagene Mx3005P was used for all qPCR reactions. 
 
Microarray data 
 
Previously published raw and processed microarray data characterizing the transcriptomic profile of primary bile 
duct cells and cholangiocyte-like-cells were used.17 This data is available on ArrayExpress (Accession number: 
E-MTAB-2965). 
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1.5 In vitro studies on human hepatic stellate cells 
 
Isolation, culture and experimental treatment of human hepatic stellate cells 
 
Primary human hepatic stellate cells were isolated from wedge sections of liver tissue, obtained from three 
patients undergoing surgery at the Royal Free Hospital after giving informed consent (EC01.14-RF). Cells were 
isolated according to Mederacke et al.18, with modifications for human liver.19,20 Briefly, 10 g of total human 
liver tissue was digested with 0.01% Collagenase, 0.05% Pronase and 0.001% DNase I without performing 
perfusion. The homogenate was filtered through a 100µm cell strainer (BD Falcon) and the flow-through was 
centrifuged at 50xg for 2 minutes at 4°C. After washing the supernatant, gradient centrifugation was performed 
at 1400xg for 17 minutes at 4°C using an 11.5% Optiprep gradient (Sigma). Finally, the interface was collected 
and washed. Purity of human hepatic stellate cells was established by detection of CD140b (PDGFRbeta), CD29 
(Integrin beta 1) and Cytoglobin B (CYGB). 
 The obtained human hepatic stellate cells were cultured in IMDM supplemented with 20% foetal bovine 
serum (FBS), Glutamine, nonessential amino acids 1X, 1.0 mM sodium pyruvate, 1X antibiotic-antimycotic (all 
Life Technologies), referred to as complete HSC medium hereinafter. Experiments described in this study were 
performed on human hepatic stellate cells of at least three independent cell preparations, between passages 2 and 
8.  
 
Real-time qPCR 
 
Total cellular RNA was extracted and then cleaned up by using QIAzol Lysis Reagent and RNeasy Kit (Qiagen, 
CA, USA), respectively, according to the manufacturer’s protocol. After quantification using the NanoDrop1000 
System (Thermo Scientific, USA), RNA was retro-transcribed into cDNA using the QuantiTect Reverse 
Transcription Kit (Qiagen, CA, USA) and 6.7 µg of the cDNA sample was used to set up real-time quantitative 
PCR reactions using TaqMan gene expression assays RSPO3_TaqMan® Gene Expression 
Assays_Hs01072567_m1, GAPDH_TaqMan® Gene Expression Assays_Hs02758991_g1 (Life technologies, 
CA, USA) and 7500 Fast Real-Time PCR System following the manufacturer's protocol. Each sample was tested 
in duplicate. Target genes were normalized using GAPDH as endogenous control and their relative expression 
was carried out with the 2−ΔCt method (where Ct represents the threshold cycle)21. The amplification efficiency 
of target and reference genes was approximately the same (slope < 0.1). 
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2. Supplementary Tables 
 
  
Supplementary table 1   Numbers of patients per country included in 
this study 
 
Country No. of patients 
Canada 158 
Finland 290 
France 34 
Germany 558 
Greece 10 
Italy 51 
Norway 397 
Poland 42 
Spain 18 
Sweden 220 
Netherlands 228 
United Kingdom 1033 
United States 363 
total 3402 
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Supplementary table 2   Association statistics of binary 
phenotypes         

         Phenotype SNP Chr. BP Minor allele MAF OR (95% CI) P-value Candidate genes 

Cholangiocarcinoma rs7731017 5 150111618 G 0.011 4.81 (2.57-9.02) 9.62 × 10-07 
LOC102546298, NDST1, SYNPO, 
MYOZ3, RBM22, DCTN4, SMIM3, 
IRGM, ZNF300, ZNF300P1 

Colorectal carcinoma rs17102823 14 35363904 C 0.139 2.29 (1.65-3.17) 7.23 × 10-07 
CFL2, BAZ1A, IGBP1P1, SRP54, 
FAM177A1, LOC101927178, 
PPP2R3C 

         

For each phenotype, PSC patients were divided into a group with the phenotype and a group without. Genetic associations were identified for each phenotype by 
Immunochip-wide association analysis.  
All associations are suggestive (P < 5.0 × 10-06 and P > 5.0 × 10-08).  
SNP, single nucleotide polymorphism; Chr, chromosome; BP, basepair position on genome build hg19/GRCh37; MAF, minor allele frequency; OR, odds ratio;  
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Supplementary table 3   Association statistics of time-to-event phenotypes       

    Minor Overall P-value     
Phenotype  SNP Chr BP allele genotype effect Comparison P-value HR (95% CI) Candidate genes 
Liver transplant-
free rs853974 6 127068983 A 6.07 × 10-09 GG vs. AA 8.0 × 10-10 0.46 (0.36-0.59) CENPW, RSPO3 

survival      AG vs. AA 2.3 × 10-06 0.55 (0.43-0.70)  
 rs1532244 3 28057905 G 9.24 × 10-07 GG vs. AA 1.6 × 10-07 4.77 (2.66-8.55) CMC1 

      GA vs. AA 3.3 × 10-01 1.10 (0.91-1.35)  

 rs17649817  5 169956579 A 7.0 × 10-08 CC vs. AA 1.1 × 10-08 0.27 (0.17-0.42) 
LCP2, LINC01366, 
KCNIP1, KCNMB1, CTD-
2270F17.1, LOC105377716 

      CA vs. AA 3.4 × 10-07 0.29 (0.18-0.47)  

Time to CCA rs3769839 2 231076625 G 9.29 × 10-07 GG vs. AA 2.3 × 10-06 9.94 (3.83-25.8) 
FBXO36, SLC16A14, 
SP110, SP140, SP140L, 
SP100 

      GA vs. AA 4.0 × 10-02 0.54 (0.30-0.97) 
 

 rs2675647 10 63518620 C 2.72 × 10-06 CC vs. AA 4.9 × 10-07 10.40 (4.17-25.8) C10orf107, ARID5B, 
MIR548AV 

      CA vs. AA 9.6 × 10-01 0.99 (0.61-1.61) 
 

 rs34985176 3 50711001 G 4.3 × 10-06 GG vs. AA 1.8 × 10-06 3.80 (2.20-6.58) 
CACNA2D2, C3orf18, 
HEMK1, CISH, 
MAPKAPK3, MIR4787, 
DOCK3 

      GA vs. AA 7.8 × 10-01 1.06 (0.72-1.56) 
 

          A Cox proportional hazards model was fitted Immunochip-wide. Sex, country, time point of diagnosis, smoking status and IBD status were included as covariates. P-
values represent the genotype effect on the time-to-event phenotypes. All time intervals start at the time of PSC diagnosis. Both genome-wide significant (P < 5.0 × 10-08, 
in bold) and suggestive (P < 5.0 × 10-06 and P > 5.0 × 10-08) associations are given. 
SNP, single nucleotide polymorphism; Chr, chromosome; BP, basepair position on genome build hg19/GRCh37; HR, hazard ratio; CCA, cholangiocarcinoma 
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ABSTRACT 

Objective Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile 

duct disease of largely unknown etiology often leading to liver transplantation or death. Little 

is known about the genetic contribution to the severity and progression of PSC. The aim of 

this study is to identify genetic variants associated with PSC disease progression and 

development of complications.  

Design We collected standardized PSC subphenotypes in a large cohort of 3,402 PSC 

patients. After quality control we combined 130,422 single nucleotide polymorphisms of all 

patients – obtained using the Illumina Immunochip – with their disease subphenotypes. 

Using logistic regression and Cox proportional hazards models we identified genetic variants 

associated with binary and time-to-event PSC subphenotypes.  

Results We identified genetic variant rs853974 to be associated with liver transplant-free 

survival (P = 6.07×10-9). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5-

59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 

72.8% (95% CI 69.6-75.7%) for GG carriers at ten years after PSC diagnosis. For the 

candidate gene in the region, RSPO3, we demonstrated expression in key liver-resident 

effector cells, such as human and murine cholangiocytes and human hepatic stellate cells. 

Conclusion We present a large international PSC patient cohort, and report genetic loci 

associated with PSC disease progression. For liver transplant-free survival, we identified a 

genome wide significant signal and demonstrated expression of the candidate gene RSPO3 

in key liver-resident effector cells. This warrants further assessments of the role of this 

potential key PSC modifier gene.  
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SUMMARY BOX 

What is already known about this subject:  

• Several case-control genome-wide association studies have revealed 20 

susceptibility loci for primary sclerosing cholangitis.  

• Little is known about the genetic contribution to the severity and progression of 

complex diseases in general and primary sclerosing cholangitis in particular. 

• RSPO3 plays a role in the activation of the canonical Wnt signaling pathway, which is 

involved in liver fibrosis. 

What are the new findings:  

• The genetic variant rs853974 is genome-wide significantly associated with liver 

transplant-free survival in primary sclerosing cholangitis. 

• Candidate gene RSPO3 is expressed in both murine and human cholangiocytes, and 

in human hepatic stellate cells.  

• Three new loci were found to be associated with time to cholangiocarcinoma in 

patients with primary sclerosing cholangitis. 

How might it impact on clinical practice in the foreseeable future? 

• Through its effect on liver fibrosis, RSPO3 could play an important role in PSC 

disease progression, and insight in its mechanism could lead to new therapeutic 

targets. 

• Furthermore, since we demonstrated that genetic variants are associated with PSC 

disease progression, genetics could provide a tool for risk stratification of patients 

with PSC in the future. 
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INTRODUCTION 

Primary sclerosing cholangitis (PSC) is a complex, cholestatic liver disease, in which chronic 

biliary inflammation and bile duct destruction leads to biliary fibrosis and liver cirrhosis, often 

in a slowly progressive manner.[1] PSC is characterized by a cholangiographic image of 

strictures interchanged with dilatations throughout the biliary tract. Reported incidence rates 

of PSC vary widely, with incidence rates of 0.91, 1.31, and 0.5 per 100,000 inhabitants per 

year for North America, Norway, and the Netherlands, respectively.[2,3] There is a male to 

female ratio of 2:1, and the disease can occur at any age, with a peak incidence around 40 

years.[3] There is a close association between PSC and inflammatory bowel disease (IBD), 

and PSC patients are subject to a 5-fold increased risk of developing colorectal carcinoma 

(CRC) when compared with the general population.[3] In addition, PSC carries an excess 

risk of cholangiocarcinoma (CCA) which seems to be unrelated to the disease duration and 

the presence of liver cirrhosis.[4] There is no effective medical therapy that can halt disease 

progression in PSC. The only curative option to date is liver transplantation.  

 The etiology of PSC is still largely unknown. The etiology is most likely to be 

multifactorial, in which the occurrence of PSC could be triggered by environmental factors in 

a genetic susceptible host.[5] The relationship between susceptibility to PSC and 

environmental factors has been studied for several risk factors, of which smoking has 

repeatedly been shown to be associated with a decreased risk of developing PSC, 

independent of its protective effect in ulcerative colitis.[6] 

 Already in 1983, the identification of associations between PSC and HLA-B8 of the 

human leukocyte antigen (HLA) complex located on chromosome 6 - harboring several 

genes that are involved in antigen presentation and are important in immunity - raised 

interest in the role of genetics in PSC.[7] This was amplified by a large Swedish study on 

PSC heritability demonstrated a nearly 4 to 17 times increased risk for first degree relatives 

of PSC patients to develop PSC, when compared with the general population.[8] The 

additional 3.3 times increased risk of ulcerative colitis, and the presence of at least one 
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concomitant immune mediated disease outside the liver and bowel in approximately 20 to 

25% of PSC patients, suggests a shared genetic component between these diseases.[8–10]  

Over the last 5 years, the application of genome-wide association studies has resulted in an 

increasing insight in the genetic architecture of PSC, with the identification of 19 non-HLA 

risk loci at the time of writing.[11–14]  

 Little is known about the genetic contribution to the severity and progression of 

complex diseases in general and PSC specifically. In Mendelian traits like cystic fibrosis and 

hemochromatosis, consortia efforts have led to the identification of robust and important 

modifier genes.[15,16] If genetic variants would be associated with PSC phenotypes, this 

could enable risk stratification of PSC patients according to disease behavior and would lead 

to insight into pathogenetic mechanisms associated to disease progression. Whilst 

translational research from susceptibility genes has yet to prove useful for the development 

of new drugs in complex disease, modifier genes may point toward pathways involved in 

disease progression amenable by pharmacological interventions. 

 The aim of this study is to identify genetic variants associated with PSC disease 

progression and development of complications, in a large, international, multicenter PSC 

cohort.  
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METHODS 

 

Study design and patients 

PSC patients previously recruited throughout Europe, the USA and Canada, and genotyped 

using the Immunochip by Liu et al.[13] were included. Subject recruitment was approved by 

the ethics committees or institutional review boards of all participating centers. Written 

informed consent was obtained from all participants. Patients of whom PSC diagnosis was 

revised after they were genotyped were excluded.  

 The following phenotypic data were collected for patient and disease characteristics: 

sex, date of birth, PSC subtype (small or large duct), date of PSC diagnosis, intra and-/or 

extra hepatic disease, dominant strictures, concomitant IBD and type of IBD, date of IBD 

diagnosis, and smoking status. Furthermore, follow-up data were collected for: date and 

cause of death, date and indication of liver transplantation, the occurrence and date of 

diagnosis of hepatocellular carcinoma (HCC), CCA, CRC, gallbladder carcinoma, and the 

occurrence and date of a colectomy.  

 PSC diagnosis was based on clinical, biochemical, cholangiographic and histologic 

criteria, as formulated by the EASL guidelines.[17] IBD diagnosis was scored based on 

accepted endoscopic, radiologic and histologic criteria.[18] 

 PSC related death was defined as death from liver failure, death from 

cholangiosepsis, death from cholangiocarcinoma or death from gallbladder carcinoma. The 

time-to-event phenotype liver transplant-free survival was defined as the time between PSC 

diagnosis and the composite endpoint of either liver transplantation or PSC related death. 

 We used genotype data of PSC patients as previously described.[13] Appendix A 

describes the quality control applied to this dataset.  A total of 130,422 single nucleotide 

polymorphisms (SNPs) for 3,402 PSC samples remained after quality control and were used 

in the analysis. 
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Statistical analysis 

The age at PSC diagnosis was expressed as median value and interquartile range. 

Categorical variables were expressed as numbers and percentages based on non-missing 

values.  

 

Binary associations 

Binary associations were calculated using multiple logistic regression. We corrected for 

clinical covariates by adding them to the regression model. To determine which clinical 

covariates to correct for, we performed a backwards elimination procedure per binary 

phenotype. We started with the full model including sex, country, date of PSC diagnosis, 

established IBD diagnosis, and smoking status, and removed covariates from the model until 

the AIC (Akaike information criterion) stabilized. 

 

Time-to-event associations 

Cox proportional hazards regression was used to estimate the effect of genetic variants on 

time-to-event PSC subphenotypes. Clinical variables that were significantly associated with 

the time-to-event phenotype in univariable Cox regression analyses (P < 0.05) were entered 

into a multivariable Cox model alongside the genotype. To visualize the effect of genotype on 

time-to-event phenotypes, Kaplan-Meier survival estimates were plotted. (Methods described 

in supplementary appendix A). 

We used the SNP2HLA software[19] to impute classical HLA alleles from genotype 

data for HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-

DPB1 and their corresponding amino acid polymorphisms from the genotype data (Methods 

described in supplementary appendix A). 

 

Mouse experiments and in vitro experiments on the role of RSPO3 in PSC 
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Mouse experiments 

 

C57BL/6 (B6) mice were purchased from Charles River (Milan, Italy). Normal C57BL/6 mice 

were sacrificed at the age of 8-10 weeks. Organs were harvested and washed by cold 

phosphate buffered saline (PBS). Cholangiocytes were isolated both from normal mice (n=3) 

and from mice (n=3) fed 0.1%3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 4 weeks, 

as a model of sclerosing cholangitis.[20] Total RNA was extracted and sequenced on an 

Illumina HiSeq 2000 machine. See Appendix A for more details. 

 

In vitro experiments on human primary biliary tissue, cholangiocyte-like-cells and hepatic 

stellate cells 

Human primary biliary tissue was obtained from a liver and pancreas organ donor after 

obtaining informed consent from the donor's family. A section of the bile duct was excised 

and homogenized and RNA was extracted. Cholangiocyte-like-cells were generated from 

human induced pluripotent stem cells and cultured. RSPO3 expression was determined 

using qPCR and compared with the housekeeping gene using the 2−∆Ct method.[21] Next to 

that, we used previously published microarray data to verify RSPO3 expression.[22] The 

R/Bioconductor package limma [23] was used to evaluate differential expression between 

pairs of conditions (hIPSCs and CLCs and hIPSCs and PBD). A linear model fit was applied 

and p-values were corrected using the method of Benjamini and Hochberg.[24] Methods are 

further described in Appendix A. 

Primary human hepatic stellate cells were isolated and cultured from wedge sections 

of liver tissue, obtained from patients undergoing surgery at the Royal Free Hospital in 

London. Total RNA was extracted and retro-transcribed into cDNA, which was used for gene 

expression assessment with qPCR. Gene expression was compared with the housekeeping 

gene using the 2−∆Ct method.  
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RESULTS 

 

Patient characteristics and natural history 

Clinical characteristics of the PSC cohort are described in table 1. The cohort consisted of 

2881 patients from Europe and 521 patients from the United States and Canada 

(Supplementary table 1). A total of 2,185 (65%) patients were male, and the median age at 

PSC diagnosis was 38.6 years (IQR 28.0 - 50.1). Concomitant IBD was diagnosed in 2,390 

(75%) patients. The median follow-up was 8.7 years. In total 874 (26%) patients underwent 

liver transplantation and 181 (5%) patients died of PSC related causes. Over 11% of patients 

developed a malignancy, most often CCA (5.6%) or CRC (4.3%).  

 

Genetic associations with binary subphenotypes 

Genome-wide association analyses focusing on the occurrence of malignancy in PSC 

patients revealed several suggestive associations (Supplementary table 2). When comparing 

107 PSC-AIH patients with 3,159 PSC patients without AIH overlap, a strong genetic 

association in the HLA-DQB1 gene was identified (top SNP rs3891175, P = 4.6 × 10-11, OR = 

2.41). After imputation of the classical HLA alleles, we found that the alleles DQA1*05:01 and 

DQB1*02:01 were most significantly associated with PSC/AIH overlap (P-values of 3.8 × 10-

11 and 1.8 × 10-07). For other binary subphenotypes - small duct PSC, the occurrence of 

HCC, gallbladder carcinoma, and proctocolectomy – no genetic associations were found. 
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Table 1   Clinical characteristics of the PSC cohort consisting of 3,402 patients 

�� �� ��

Variable Groups Number (%) 

Age at PSC diagnosis*   38.6y (28.0y - 50.1y) 

Sex male 2185 (64.7%) 

  female 1193 (35.3%) 

  missing 24 (0.7%) 

Main diagnosis PSC 3159 (94.6%) 

  small duct PSC 75 (2.2%) 

  PSC with AIH overlap 107 (3.2%) 

  missing 61 (1.8%) 

Liver transplantation Yes 874 (26.3%) 

  No 2444 (73.7%) 

  missing 84 (2.5%) 

Colectomy Yes 419 (12.6%) 

  No 2897 (87.4%) 

  missing 86 (2.5%) 

IBD No IBD 816 (25.5%) 

  Ulcerative colitis 1940 (60.5%) 

  Crohn's disease 357 (11.1%) 

  IBD-U 93 (2.9%) 

  missing 196 (5.8%) 

Cholangiocarcinoma Yes 188 (5.6%) 

  No 3147 (94.4%) 

  missing 67 (2.0%) 

Colorectal carcinoma Yes 127 (4.3%) 

  No 2822 (95.7%) 

  missing 453 (13.3%) 

Gall bladder carcinoma Yes 30 (1.0%) 

  No 2977 (99.0%) 

  missing 395 (11.6%) 

Hepatocellular carcinoma Yes 22 (0.7%) 

  No 2984 (99.3%) 

  missing 396 (11.6%) 

Smoking status Smoker 140 (6.0%) 

  Ex-Smoker 529 (22.7%) 

  Non-smoker 1657 (71.2%) 

  missing 1076 (31.6%) 

Death Non PSC related 47 (1.5%) 

  Liver failure 66 (2.1%) 

  Cholangiosepsis 18 (0.6%) 

  Gallbladder carcinoma 12 (0.4%) 

  Cholangiocarcinoma 85 (2.6%) 

  Hepatocellular carcinoma 6 (0.2%) 

  Colorectal carcinoma in case of coexisting IBD 3 (0.1%) 

  Alive 2977 (92.6%) 

 missing 188 (5.5%) 

   

*Values shown as median (IQR). 
Quantitative data are expressed as counts and percentages excluding missing data. 
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Genetic associations with time-to-event subphenotypes 

Next, we aimed to determine whether genetic variants are associated with important time-to-

event variables reflecting the PSC disease course, e.g. time between PSC diagnosis and the 

development of a carcinoma. For this, we developed a framework to perform Immunochip-

wide Cox proportional hazards analyses. We defined the liver transplant-free survival 

subphenotype as time from PSC diagnosis until liver transplantation or PSC related death. 

Univariable Cox regression analyses including clinical parameters showed statistically 

significant associations with the time to event endpoint transplant-free survival for sex, 

country, date of PSC diagnosis, established IBD diagnosis, and smoking status. Next, we 

tested 130,422 SNPs for association with liver transplant-free survival using multivariable 

Cox proportional hazards regression, including the genotype effect alongside the significant 

clinical co-variables. We found SNP rs853974 to be associated with liver transplant-free 

survival of PSC patients at genome wide significance (P = 6.07 × 10-9). Kaplan-Meier survival 

analysis showed a 50.9% (95% CI 41.5-59.5%) transplant-free survival for homozygous AA 

allele carriers of rs853974 compared with 72.8% (95% CI 69.6-75.7%) for GG carriers at ten 

years after PSC diagnosis (figure 1A).  AA homozygotes had a 2.14 (95% CI = 1.66-2.76) 

increased hazard, indicating a 2.14 larger relative risk for need for liver transplantation or for 

PSC related death compared to GG homozygotes. Figure 1B shows a regional plot of this 

observed association.  

SNP rs853974 is located on chromosome 6. We did not identify a direct functional 

effect of this SNP on gene expression or regulatory features (Appendix A). We hypothesized 

that neighbouring gene R-spondin 3 (RSPO3) would be the most likely positional candidate 

gene. The other neighboring gene, CENPW, has a fundamental role in kinetochore assembly 

and is required for normal chromosome organization and progress through mitosis and 

therefore not a good candidate. In addition to SNP rs853974, additional suggestive genetic 

associations with time-to-event phenotypes liver transplant-free survival and time to CCA 

were found (Supplementary table 3). 
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Expression of RSPO3 in key liver-resident effector cells 

To assess whether RSPO3 is expressed in disease relevant cells (cholangiocytes and 

hepatic stellate cells), we performed RNA-sequencing on healthy and cholestatic 

cholangiocytes and multiple organs derived from normal C57BL/6 mice. RSPO3 expression 

was 7 to 20 folds higher in cholangiocytes as compared with any of the organs. Furthermore, 

RSPO3 expression was higher in healthy cholangiocytes than in cholestatic cholangiocytes 

(figure 2A). 

 Next, using microarrays, we assessed expression of RSPO3 in human induced 

pluripotent stem cells, human induced pluripotent stem cell-derived cholangiocyte-like cells, 

and human primary bile duct samples. RSPO3 expression was significantly higher in 

cholangiocyte-like cells and primary bile duct cells compared with human induced pluripotent 

stem cells (figure 2B). This finding was confirmed by qPCR (figure 2C).  

 Since activated hepatic stellate cells are the main cells involved in liver fibrosis,[25] 

we also investigated expression of RSPO3 in human culture-activated hepatic stellate cells. 

We isolated, cultured and activated human hepatic stellate cells of three patients without 

PSC. Using qPCR we observed expression of the hepatic stellate cell marker gene 

Cytoglobin B, as well as expression of RSPO3 in all three subjects (figure 2D). We did not 

observe RSPO3 expression in human CD4 and CD8 T lymphocytes (data not shown).  
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DISCUSSION 

 

To date, very few disease-modifying genes have been identified in rare complex diseases. 

Collaboration within the international PSC Study group enabled the establishment of a cohort 

of unprecedented size, for an orphan disease such as PSC, enabling the investigation of 

genetic variation underlying the progression of PSC through time. Overall, it is a major 

challenge to determine genetic variants associated with survival, and only few genetic 

studies investigating this have been published.[26] We present a conceptually new method to 

determine associations between genetic variants and disease course, using genome wide 

multivariable Cox proportional hazards regression analyses. Here we identify a genome wide 

significant association between SNP rs853974 – located close to the RSPO3 gene – and 

liver transplant-free survival in PSC. Interestingly, this locus is not associated with PSC 

susceptibility and thus exemplifies different genetic regulation of disease susceptibility and 

disease progression. 

 This study is based on genotype data obtained using Illumina immunochip, a 

genotyping platform that densely covers genetic regions associated to immune mediated 

diseases. Use of GWAS arrays, that more uniformly cover genetic variants all over the 

genome, would have been ideal. However, a complete GWAS dataset for the entire 

international cohort was not available at the time of study. For that reason we started with the 

available immunochip data. Given the positive findings in this study, a similar study on 

GWAS arrays data could very well be of additional value. 

 For the binary phenotype of developing cholangiocarcinoma or not, we found an 

association at chromosome 5 at 150 Mb (Supplementary table 2). Of interest, this locus 

contains an established genetic association with Crohn's disease susceptibility in the 

autophagy gene IRGM. [27] For the phenotype of developing colorectal carcinoma or not we 

found an association at chromosome 14 at 35 Mb. This locus appeared not to be associated 

with sporadic colorectal cancer. 

 Since transplant-free survival is a combined and heterogeneous phenotype we 
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assessed to which extent the following three subgroups contribute to the association:  

1) transplanted patients with indication for transplantation "end stage liver disease" and 

patients died because of "liver failure"; 2) transplanted patients with indication for 

transplantation "cca/high grade dysplasia" and patients died because of "cca or gallbladder 

carcinoma"; and 3) transplanted patients with indication for transplantation "intolerable 

complaints/pruritus/recurrent cholangitis" and patients died of "cholangiosepsis". We 

observed a stronger contribution of subgroups 1 and 3 to the association, indicating that the 

underlying biological mechanism is more likely one involved in causing progression of liver 

disease and/or cholangitis or cholangiosepsis rather than a mechanism involved in cancer 

development. 

 R-spondin 3 is a member of the R-spondin protein family (R-spondin 1-4).[28] These 

proteins are secreted agonists of the canonical Wnt/β-catenin signaling pathway.[28] They 

activate the pathway leading to induced transcription of Wnt target genes. Wnt/β-catenin 

signaling plays a central role in embryogenesis, organogenesis and adult homeostasis, and 

is a critical regulator of stem cell maintenance.[29,30]  RSPO3 is a ligand of the Frizzled 8 

and LRP5/6 receptors.[28] In the canonical form of the Wnt pathway, binding of ligands to the 

Frizzled (Fzd) receptor and LRP5 or 6 co-receptors causes β-catenin to dephosphorylate in 

the cytoplasm. Accumulated β-catenin translocates to the nucleus where it binds to T cell 

factor (TCF)/Lymphoid enhancer-binding factor (LEF), causing transcription of Wnt target 

genes – such as Fibronectin, MMP-7, Twist, and Snail. These factors activate hepatic stellate 

cells and induce liver fibrosis. Blocking the Wnt signaling pathway using Dickkopf-1 (Dkk-1), 

a Wnt co-receptor antagonist, restores hepatic stellate cells quiescence in culture.[31] 

Hence, Wnt signaling is involved in both progression and regression of liver fibrosis, either by 

inhibiting or promoting activation and survival of hepatic stellate cells.[31,32] Also, RSPOs 

have been shown to facilitate hepatic stellate cell activation and promote hepatic 

fibrogenesis.[33] Here, we demonstrate that RSPO3 is expressed in key effector cells 

involved in the pathogenesis of PSC. Since we have shown that PSC patients that are 

homozygote AA carriers of rs853974 progress more rapidly towards PSC related death or 
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liver transplantation, RSPO3 can be regarded a plausible candidate gene to be involved in 

PSC disease progression. Hypothetically, PSC patients might benefit from reduction of 

RSPO3 or generally canonical Wnt signaling.  

 In an Immunochip analysis of the International IBD Genetics Consortium including 

over 75,000 individuals[34], an intronic SNP rs9491697 in RSPO3 (which is not in linkage 

disequilibrium with rs853974, r2 = 0.014) was identified to be associated with Crohn's disease 

(P = 3.79 × 10-10, OR = 1.077) but not with ulcerative colitis. Given the small number of 

Crohn's disease patients (n = 357) within the present study, the lack of linkage disequilibrium 

between the two “hit SNPs”, and the fact that our multivariate Cox model corrected for IBD-

status, the identified association signal does not seem to be driven by the co-occurrence of 

Crohn's disease in our cohort.  

 For several binary and time-to-event subphenotypes we found suggestive genetic 

associations. Two additional SNPs, rs1532244 on chromosome 3 and rs17649817 on 

chromosome 5, were suggestively associated with transplant-free survival. Furthermore, one 

SNP, rs7731017, was suggestively associated with the presence of CCA. We investigated 

whether any of the candidate genes in the locus overlapped with genes identified in tumour 

sequencing studies of cholangiocarcinoma. We did not find an overlap with the 32 genes 

reported to be significantly altered in intrahepatic, extrahepatic, and gallbladder cancer by 

Nakamura et al.[35] When comparing the genes in our CCA locus with 1146 genes 

containing non-synonymous somatic mutations in intrahepatic cholanciocarcinoma[36], we 

found that the SYNPO gene was both in the list of 1146 genes of the sequencing study as 

well as in the locus that we identified to be associated with the presence of CCA. There is 

little known about this gene and there is no connection with oncogenesis. Another gene, 

SP100, was found in this study to be in the locus associated with time to CCA and is also in 

the list of 1146 genes. SP100 is associated with autoimmune disease of the urogenital tract 

and also with PBC. Interestingly, anti-sp100 autoantibodies have been described for 

PBC[37]. The genetic association of SP100 with both PBC and the time to CCA within PSC 

patients as well as the existence of anti-sp100 autoantibodies makes this an interesting gene 
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for future follow-up studies.  

 When comparing PSC-AIH patients with PSC patients without AIH, we found a strong 

genetic association with PSC-AIH in the HLA-DQB1 gene. The identified variant was tagging 

the classical HLA haplotypes DQA1*05:01 and DQB1*02:01. These associations overlap the 

associations found by a previous genome-wide association study of AIH type 1 in The 

Netherlands,[38] suggesting that the genetic basis for AIH type 1 pathogenesis is similar for 

isolated AIH type 1 patients, compared with PSC-AIH patients. 

 This study is limited by the relatively small cohort size, when compared with other 

GWAS studies that incorporate tens of thousands of samples. The resulting lack of statistical 

power may have played a role in the binary analyses, in which suggestive hits were found for 

CCA and CRC but genome wide significance was not reached. However, PSC is a rare 

disease, and the present study has included patients recruited throughout the world in a 

joined effort. It is therefore not expected that a larger cohort of PSC cases will become 

available soon.   

 In conclusion, we present the largest association study of PSC genotypes with 

disease phenotypes to date. We identified several genetic variants associated with PSC 

disease course. Specifically, we report rs853974 to be genome-wide significantly associated 

with liver transplant-free survival in PSC. Findings of candidate gene RSPO3 being 

expressed in both mouse and human cholangiocytes and human activated hepatic stellate 

cells warrant further assessments of the role of this potential key PSC modifier gene.  
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Figure legends 

 

Figure 1: Association of genetic variants on chromosome 6 with transplant-free 

survival of PSC patients.  

(A) Kaplan-Meier curves of transplant-free survival. Patients are stratified according to their 

genotype for SNP rs853974. The P-value for genotype effect in the Cox proportional hazards 

model is P = 6.07 × 10-09. (B) Regional association plot for transplant-free survival. The Y-

axis shows the -log10(P-value) for genotype effect in the Cox proportional hazards model. 

 

Figure 2: RSPO3 expression in mouse cholangiocytes and in human cholangiocyte-

like-cells, primary bile duct and hepatic stellate cells  

(A) RNAseq analysis of RSPO3 expression in DDC induced cholestatic cholangiocytes, 

healthy cholangiocytes and multiple organs of normal C57BL/6 mice. FPKM: Fragments Per 

Kilobase of exon per Million mapped reads. (B) Microarray RSPO3 expression in human 

induced pluripotent stem cells (hiPSCs), cholangiocyte-like-cells (CLCs) and primary bile 

duct (PBD). RSPO3 expression is significantly increased in CLCs and in PBD compared to 

hiPSCs. n=3; error bars, standard deviation. Asterisks represent statistical significance 

(****adjusted P<0.0001, ***adjusted P<0.001, Benjamini and Hochberg corrected P-values). 

(C) Quantitative real time PCR (qPCR) analysis demonstrating the expression of RSPO3 in 

hiPSC-derived CLCs and PBD samples compared to expression in hiPSCs. Expression 

levels are fold changes compared to housekeeping gene HMDS calculated using the 2−∆Ct 

method. (D) Quantitative real time PCR (qPCR) analysis showing expression of RSPO3 and 

Cytoglobin B in three patients without PSC. Cytoglobin B mRNA expression was evaluated 

as specific HSC marker. Target genes were normalized using GAPDH as endogenous 

control and their relative expression was calculated with the 2−∆Ct method. 

 

 

Page 69 of 67

https://mc.manuscriptcentral.com/gut

Gut

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Confidential: For Review Only

 27

 

Page 70 of 67

https://mc.manuscriptcentral.com/gut

Gut

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


