25 research outputs found

    A nanocommunication system for endocrine diseases

    Get PDF
    Nanotechnology is a newand very promising area of research which will allow several new applications to be created in different fields, such as, biological, medical, environmental, military, agricultural, industrial and consumer goods. This paper focuses specifically on nanocommunications, which will allow interconnected devices, at the nano-scale, to achieve collaborative tasks, greatly changing the paradigm in the fields described. Molecular communication is a new communication paradigm which allows nanomachines to exchange information using molecules as carrier. This is the most promising nanocommunication method within nanonetworks, since it can use bio-inspired techniques, inherit from studied biological systems, which makes the connection of biologic and man-made systems a easier process. At this point, the biggest challenges in these type of nanocommunication are to establish feasible and reliable techniques that will allow information to be encoded, and mechanisms that ensure a molecular communication between different nodes. This paper focus on creating concepts and techniques to tackle these challenges, and establishing new foundations on which future work can be developed. The created concepts and techniques are then applied in an envisioned medical application, which is based on a molecular nanonetwork deployed inside the Human body. The goal of this medical application is to automatously monitor endocrine diseases using the benefits of nanonetworks, which in turn connects with the internet, thus creating a Internet of NanoThings system. The concepts and techniques developed are evaluated by performing several simulations and comparing with other researches, and the results and discussions are presented on the later sections of this paper

    Applications of molecular communications to medicine: A survey

    Get PDF
    In recent years, progresses in nanotechnology have established the foundations for implementing nanomachines capable of carrying out simple but significant tasks. Under this stimulus, researchers have been proposing various solutions for realizing nanoscale communications, considering both electromagnetic and biological communications. Their aim is to extend the capabilities of nanodevices, so as to enable the execution of more complex tasks by means of mutual coordination, achievable through communications. However, although most of these proposals show how devices can communicate at the nanoscales, they leave in the background specific applications of these new technologies. Thus, this paper shows an overview of the actual and potential applications that can rely on a specific class of such communications techniques, commonly referred to as molecular communications. In particular, we focus on health-related applications. This decision is due to the rapidly increasing interests of research communities and companies to minimally invasive, biocompatible, and targeted health-care solutions. Molecular communication techniques have actually the potentials of becoming the main technology for implementing advanced medical solution. Hence, in this paper we provide a taxonomy of potential applications, illustrate them in some detail, along with the existing open challenges for them to be actually deployed, and draw future perspectives

    A molecular communication framework for modeling targeted drug delivery systems

    Get PDF
    Molecular Communication (MC) is a new paradigm in communication research where the exchange of information is achieved through the propagation of molecules. The objective of the proposed research is to develop an analytical framework for the modeling, performance analysis, and optimization of Drug Delivery Systems (DDS’s) through the MC paradigm. The goal of a DDS is to provide a localized drug presence where the medication is needed, while, at the same time, preventing the drug from affecting other healthy parts of the body. Amongst others, the most advanced solutions use drugs composed of nano-sized particles for Particulate Drug Delivery Systems (PDDS) or antibody fragments for Antibody-mediated Drug Delivery Systems (ADDS). In this work, first, a fundamental analytical model of the drug particle propagation through the cardiovascular system is presented, comprised of the blood velocity network, using transmission line theory, and the drug propagation network, using harmonic matrices theory. The outcomes of the analytical model are validated by comparing them with physiological measurements as well as comprehensive simulations of drug propagation in the cardiovascular system using COMSOL finite-element simulations and kinetic Monte-Carlo simulations. Second, the MC-PDDS pharmacokinetic model is developed by taking into account the biochemical interactions between the nanoparticles and the body. The performance and optimization of the MC-PDDS is studied through delay, path loss, noise, and capacity. Third, the MC-ADDS model is derived to capture the peculiarities of antibody-antigen transport and interactions. The effect of the shape and electrochemical structure of the ADDS molecules is reflected on the delay, path loss, and noise. The MC-DDS system modeling is shown to be a full-fledged framework for the design and optimization of targeted DDS and other biomedical engineering applications.Ph.D

    Propagation Modeling and Analysis of Molecular Motors in Molecular Communication

    No full text

    On the Upper Bound of the Information Capacity in Neuronal Synapses

    No full text

    A Molecular Communication System Model for Particulate Drug Delivery Systems

    No full text
    corecore