766 research outputs found

    Personality traits and disorders among adult adhd patients: Do they vary between males and females?

    Get PDF
    INTRODUCTION: Patients with Attention Deficit/Hyperactivity Disorder (ADHD) have shown an increased risk of developing a DSM Cluster B (i.e., Borderline, OR=13.16; Antisocial, OR=3.03; Narcissistic, OR=8.69) and DSM Avoidant Personality Disorder (PD; OR=9.77; Miller et al., 2008). Although different comorbidities affect males and females with ADHD (Kooij et al., 2013), gender differences in personality traits and disorders have not yet been investigated. OBJECTIVES: To describe gender differences in personality traits and disorders among a sample of adult outpatients with ADHD. METHODS: A consecutive sample of DSM-5 ADHD outpatients was recruited at the Adult ADHD Center of the “San Luigi” University Hospital (Orbassano (TO), Italy) between Jan 2017 and Jan 2018. Patients’ personality was assessed by Millon Clinical Multiaxial Inventory (MCMI-III; Zennaro et al, 2008). RESULTS: The study sample consisted of 82 males and 31 females. Sixty percent of men vs. 77% of women had a personality disorder ( CONCLUSIONS: Women with ADHD showed a higher frequency of personality disorders and higher rate of Masochistic PD than men. Moreover, the two most important clusters detected in women included severe personality components (i.e., Borderline and Paranoid) when compared with men. Further studies on larger samples should be conducted to confirm more severe personality profiles in women than in men. DISCLOSURE: No significant relationships

    Particle Aggregation in a turbulent Keplerian flow

    Get PDF
    In the problem of planetary formation one seeks a mechanism to gather small solid particles together into larger accumulations of solid matter. Here we describe a scenario in which turbulence mediates this process by aggregating particles into anticyclonic regions. If, as our simulations suggest, anticyclonic vortices form as long-lived coherent structures, the process becomes more powerful because such vortices trap particles effectively. Even if the turbulence is decaying, following the upheaval that formed the disk, there is enough time to make the dust distribution quite lumpy.Comment: 16 pages, 9 figure

    Richardson-Gaudin integrability in the contraction limit of the quasispin

    Full text link
    Background: The reduced, level-independent, Bardeen-Cooper-Schrieffer Hamiltonian is exactly diagonalizable by means of a Bethe Ansatz wavefunction, provided the free variables in the Ansatz are the solutions of the set of Richardson-Gaudin equations. On the one side, the Bethe Ansatz is a simple product state of generalised pair operators. On the other hand, the Richardson-Gaudin equations are strongly coupled in a non-linear way, making them prone to singularities. Unfortunately, it is non-trivial to give a clear physical interpretation to the Richardson-Gaudin variables because no physical operator is directly related to the individual variables. Purpose: The purpose of this paper is to shed more light on the critical behavior of the Richardson-Gaudin equations, and how this is related to the product wave structure of the Bethe Ansatz. Method: A pseudo-deformation of the quasi-spin algebra is introduced, leading towards a Heisenberg-Weyl algebra in the contraction limit of the deformation parameter. This enables an adiabatic connection of the exact Bethe Ansatz eigenstates with pure bosonic multiphonon states. The physical interpretation of this approach is an adiabatic suppression of the Pauli exclusion principle. Results: The method is applied to a so-called "picket-fence" model for the BCS Hamiltonian, displaying a typical critical behavior in the Richardson-Gaudin variables. It was observed that the associated bosonic multiphonon states change collective nature at the critical interaction strengths of the Richardson-Gaudin equations. Conclusions: The Pauli exclusion principle is the main responsible for the critical behavior of the Richardson-Gaudin equations, which can be suppressed by means of a pseudo deformation of the quasispin algebra.Comment: PACS 02.30.Ik, 21.10.Re, 21.60.Ce, 74.20.F

    Two-year observations of the Jupiter polar regions by JIRAM on board Juno

    Get PDF
    We observed the evolution of Jupiter's polar cyclonic structures over two years between February 2017 and February 2019, using polar observations by the Jovian InfraRed Auroral Mapper, JIRAM, on the Juno mission. Images and spectra were collected by the instrument in the 5‐Όm wavelength range. The images were used to monitor the development of the cyclonic and anticyclonic structures at latitudes higher than 80° both in the northern and the southern hemispheres. Spectroscopic measurements were then used to monitor the abundances of the minor atmospheric constituents water vapor, ammonia, phosphine and germane in the polar regions, where the atmospheric optical depth is less than 1. Finally, we performed a comparative analysis with oceanic cyclones on Earth in an attempt to explain the spectral characteristics of the cyclonic structures we observe in Jupiter's polar atmosphere

    Discovery of a Thirty-Degree Long Ultraviolet Arc in Ursa Major

    Get PDF
    Our view of the interstellar medium of the Milky Way and the universe beyond is affected by the structure of the local environment in the Solar neighborhood. Here, we present the discovery of a thirty-degree long arc of ultraviolet emission with a thickness of only a few arcminutes: the Ursa Major Arc. It consists of several arclets seen in the near- and far-ultraviolet bands of the GALEX satellite. A two-degree section of the arc was first detected in the H{\alpha} optical spectral line in 1997; additional sections were seen in the optical by the team of amateur astronomers included in this work. This direction of the sky is known for very low hydrogen column density and dust extinction; many deep fields for extra-galactic and cosmological investigations lie in this direction. Diffuse ultraviolet and optical interstellar emission are often attributed to scattering of light by interstellar dust. The lack of correlation between the Ursa Major Arc and thermal dust emission observed with the Planck satellite, however, suggests that other emission mechanisms must be at play. We discuss the origin of the Ursa Major Arc as the result of an interstellar shock in the Solar neighborhood.Comment: Accepted by A&A on April 3, 202

    Interfering Doorway States and Giant Resonances. II: Transition Strengths

    Get PDF
    The mixing of the doorway components of a giant resonance (GR) due to the interaction via common decay channels influences significantly the distribution of the multipole strength and the energy spectrum of the decay products of the GR. The concept of the partial widths of a GR becomes ambiguous when the mixing is strong. In this case, the partial widths determined in terms of the KK- and SS-matrices must be distinguished. The photoemission turns out to be most sensitive to the overlapping of the doorway states. At high excitation energies, the interference between the doorway states leads to a restructuring towards lower energies and apparent quenching of the dipole strength.Comment: 17 pages, LaTeX, 5 figures as JPEG, to appear in PRC (July 1997

    GDR in Superdeformed Nuclei

    Get PDF
    A search for the gamma decay of the Giant Dipole Resonance built on superdeformed nuclear configurations was made. The superdeformed states of the Eu-143 nucleus were populated using the reaction Pd-110(Cl-37, 4n)Eu-143 at a beam energy of 165 MeV. High energy gamma-rays were detected in 8 large BaF2 scintillators in coincidence with discrete transitions measured with part of the NORDBALL array (17 HPGe detectors and a 2 pi multiplicity filter). Spectra of high-energy gamma-rays gated by low-energy transitions from states fed by the superdeformed bands show an excess yield in the 7-10 MeV region with respect to those gated by transitions from states not populated by the superdeformed bands. Because the dipole oscillation along the superdeformed axis of the nucleus is expected to have a frequency corresponding to approximate to 8 MeV (low energy component of the GDR strength function), the present result gives the first experimental indication of gamma-ray emission of the GDR built on a superdeformed states

    Galactic interstellar filaments as probed by LOFAR and Planck

    Get PDF
    Recent Low Frequency Array (LOFAR) observations at 115-175 MHz of a field at medium Galactic latitudes (centered at the bright quasar 3C196) have shown striking filamentary structures in polarization that extend over more than 4 degrees across the sky. In addition, the Planck satellite has released full sky maps of the dust emission in polarization at 353GHz. The LOFAR data resolve Faraday structures along the line of sight, whereas the Planck dust polarization maps probe the orientation of the sky projected magnetic field component. Hence, no apparent correlation between the two is expected. Here we report a surprising, yet clear, correlation between the filamentary structures, detected with LOFAR, and the magnetic field orientation, probed by the Planck satellite. This finding points to a common, yet unclear, physical origin of the two measurements in this specific area in the sky. A number of follow-up multi- frequency studies are proposed to shed light on this unexpected finding.Comment: 6 pages, 4 figures, accepted for publication in MNRAS Letter

    Influence of steps on the tilting and adsorption dynamics of ordered Pn films on vicinal Ag(111) surfaces

    Get PDF
    Here we present a structural study of pentacene (Pn) thin films on vicinal Ag(111) surfaces by He atom diffraction measurements and density functional theory (DFT) calculations supplemented with van der Waals (vdW) interactions. Our He atom diffraction results suggest initial adsorption at the step edges evidenced by initial slow specular reflection intensity decay rate as a function of Pn deposition time. In parallel with the experimental findings, our DFT+vdW calculations predict the step edges as the most stable adsorption site on the surface. An isolated molecule adsorbs as tilted on the step edge with a binding energy of 1.4 eV. In addition, a complete monolayer (ML) with pentacenes flat on the terraces and tilted only at the step edges is found to be more stable than one with all lying flat or tilted molecules, which in turn influences multilayers. Hence our results suggest that step edges can trap Pn molecules and act as nucleation sites for the growth of ordered thin films with a crystal structure similar to that of bulk Pn.Comment: 4 pages, 4 figures, 1 tabl
    • 

    corecore