75 research outputs found

    Seeing the forest for the heterogeneous trees: stand-scale resource distributions emerge from tree-scale structure

    Get PDF
    Abstract. Forest ecosystem processes depend on local interactions that are modified by the spatial pattern of trees and resources. Effects of resource supplies on processes such as regeneration are increasingly well understood, yet we have few tools to compare resource heterogeneity among forests that differ in structural complexity. We used a neighborhood approach to examine understory light and nutrient availability in a well-replicated and largescale variable-retention harvesting experiment in a red pine forest in Minnesota, USA. The experiment included an unharvested control and three harvesting treatments with similar tree abundance but different patterns of retention (evenly dispersed as well as aggregated retention achieved by cutting 0.1-or 0.3-ha gaps). We measured light and soil nutrients across all treatments and mapped trees around each sample point to develop an index of neighborhood effects (NI). Field data and simulation modeling were used to test hypotheses that the mean and heterogeneity of resource availability would increase with patchiness because of greater variation in competitive environments. Our treatments dramatically altered the types and abundances of competitive neighborhoods (NI) in each stand and resulted in significantly nonlinear relationships of light, nitrogen and phosphorus availability to NI. Hence, the distribution of neighborhoods in each treatment had a significant impact on resource availability and heterogeneity. In dense control stands, neighborhood variation had little impact on resource availability, whereas in more open stands (retention treatments), it had large effects on light and modest effects on soil nutrients. Our results demonstrate that tree spatial pattern can affect resource availability and heterogeneity in explainable and predictable ways, and that neighborhood models provide a useful tool for scaling heterogeneity from the individual tree to the stand. These insights are needed to anticipate the outcomes of silvicultural manipulations and should become more holistically integrated into both basic ecological and management science

    Biomass growth response to spatial pattern of variable-retention harvesting in a northern Minnesota pine ecosystem

    Get PDF
    Variable-retention harvesting (VRH) is an approach for sustaining complex structure in managed forests. A criticism of VRH is that ecological benefits may come at a cost of reduced growth of regeneration, due to competition with residual trees. However, the spatial pattern of retention, i.e., dispersed or aggregated, in VRH systems can be manipulated to minimize suppression of regeneration, and resource limitation to regeneration might be mitigated by reduction of woody shrubs. Continued growth of the residual cohort will compensate for growth reduction of regeneration, although this may differ with retention pattern. We examined aboveground whole-stand biomass growth of trees in a VRH experiment in Pinus resinosa forest in Minnesota, USA. Treatments included dispersed retention, aggregated retention, and an uncut control, as well as a shrub treatment (reduced density or ambient). We addressed the following hypotheses: (1) biomass growth of a cohort of planted pine seedlings will be highest with aggregated rather than dispersed retention, (2) biomass growth of the planted seedlings will increase with shrub reduction, and (3) biomass growth of the residual overstory will be higher with dispersed rather than aggregated retention. Aboveground biomass growth of the planted pines ranged from 0.4 kg·ha−1·yr−1 in the overstory-control–ambient-shrub treatment to 23 kg·ha−1·yr−1 in the aggregated-retention–shrub-reduction treatment. The difference between the control and the retention treatments was significant (P 100% increase) with shrub reduction (P = 0.001), supporting our second hypothesis. Biomass growth of residual trees ranged from 2404 kg·ha−1·yr−1 in the uncut-control–ambient-shrub treatment to 1043 kg·ha−1·yr−1 in the aggregated-retention–shrub-reduction treatment. Differences were significant between the control and retention treatments (P = 0.003), and marginally higher with dispersed vs. aggregated retention (P = 0.09), lending support to our third hypothesis. Our results suggest that managers have flexibility in application of VRH and can expect similar stand-level biomass growth of planted regeneration regardless of retention pattern, but somewhat higher stand-level biomass growth of retained trees with dispersed retention

    The Safety Attitudes Questionnaire: psychometric properties, benchmarking data, and emerging research

    Get PDF
    BACKGROUND: There is widespread interest in measuring healthcare provider attitudes about issues relevant to patient safety (often called safety climate or safety culture). Here we report the psychometric properties, establish benchmarking data, and discuss emerging areas of research with the University of Texas Safety Attitudes Questionnaire. METHODS: Six cross-sectional surveys of health care providers (n = 10,843) in 203 clinical areas (including critical care units, operating rooms, inpatient settings, and ambulatory clinics) in three countries (USA, UK, New Zealand). Multilevel factor analyses yielded results at the clinical area level and the respondent nested within clinical area level. We report scale reliability, floor/ceiling effects, item factor loadings, inter-factor correlations, and percentage of respondents who agree with each item and scale. RESULTS: A six factor model of provider attitudes fit to the data at both the clinical area and respondent nested within clinical area levels. The factors were: Teamwork Climate, Safety Climate, Perceptions of Management, Job Satisfaction, Working Conditions, and Stress Recognition. Scale reliability was 0.9. Provider attitudes varied greatly both within and among organizations. Results are presented to allow benchmarking among organizations and emerging research is discussed. CONCLUSION: The Safety Attitudes Questionnaire demonstrated good psychometric properties. Healthcare organizations can use the survey to measure caregiver attitudes about six patient safety-related domains, to compare themselves with other organizations, to prompt interventions to improve safety attitudes and to measure the effectiveness of these interventions

    Optogenetic acidification of synaptic vesicles and lysosomes

    Get PDF
    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Gluttony, excess, and the fall of the planter class in the British Caribbean

    No full text
    Food and rituals around eating are a fundamental part of human existence. They can also be heavily politicized and socially significant. In the British Caribbean, white slaveholders were renowned for their hospitality towards one another and towards white visitors. This was no simple quirk of local character. Hospitality and sociability played a crucial role in binding the white minority together. This solidarity helped a small number of whites to dominate and control the enslaved majority. By the end of the eighteenth century, British metropolitan observers had an entrenched opinion of Caribbean whites as gluttons. Travelers reported on the sumptuous meals and excessive drinking of the planter class. Abolitionists associated these features of local society with the corrupting influences of slavery. Excessive consumption and lack of self-control were seen as symptoms of white creole failure. This article explores how local cuisine and white creole eating rituals developed as part of slave societies and examines the ways in which ideas about hospitality and gluttony fed into the debates over slavery that led to the dismantling of slavery and the fall of the planter class

    New cohort growth and survival in variable retention harvests of a pine ecosystem in Minnesota, USA

    No full text
    There is significant interest in silvicultural systems such as variable retention harvesting (VRH) that emulate natural disturbance and increase structural complexity, spatial heterogeneity, and biological diversity in managed forests. However, the consequences of variable retention harvesting for new cohort growth and survival are not well characterized in many forest ecosystems. Moreover, the relative importance of resource preemption by existing ground layer vegetation after variable retention harvests is unclear. We addressed both in a VRH experiment implemented as a randomized block design replicated four times in red pine forest in Minnesota, USA. Treatments included a thinning with residual trees dispersed evenly throughout the stand (dispersed) and two patch cuts that left 0.1 ha gaps (small gap) or 0.3 ha gaps (large gap) in a forest matrix. Residual basal area was held near constant in the three harvest treatments. We planted seedlings of three common pines (Pinus banksiana, P. strobus and P. resinosa) and measured light, soil nutrients and growth over seven growing seasons. We hypothesized that forests with equivalent average structures (e.g., basal area) would have higher stand-level seedling growth and survival in aggregated retention versus dispersed retention stands. However, variable retention harvest resulted in relatively small differences in growth and survival across the three retention treatments (although all differed as expected from uncut controls). Species specific responses to overstory treatments were partially related to shade tolerance. Tolerant white pine had high survival across all overstory treatments whereas intolerant red and jack pine had lower survival in uncut controls. In general, jack pine had the strongest growth response to reduction of overstory density. However, both white and jack pine achieved highest growth in the dispersed treatment despite differences in shade tolerance. Regardless of species, shrubs had a strong impact on seedling growth. Indeed, differences in growth were often larger across shrub treatments than among retention treatments. Our results support the hypothesis that shrubs preempt resources and dampen the impacts of different overstory retention patterns on new cohort growth and survival. Our results imply that managers have considerable flexibility to employ various types of retention patterns coupled with planting in red pine ecosystems at least at the levels of retention studied here

    Seeing the forest for the heterogeneous trees : stand-scale resource distributions emerge from tree-scale structure

    Get PDF
    Forest ecosystem processes depend on local interactions that are modified by the spatial pattern of trees and resources. Effects of resource supplies on processes such as regeneration are increasingly well understood, yet we have few tools to compare resource heterogeneity among forests that differ in structural complexity. We used a neighborhood approach to examine understory light and nutrient availability in a well-replicated and largescale variable-retention harvesting experiment in a red pine forest in Minnesota, USA. The experiment included an unharvested control and three harvesting treatments with similar tree abundance but different patterns of retention (evenly dispersed as well as aggregated retention achieved by cutting 0.1- or 0.3-ha gaps). We measured light and soil nutrients across all treatments and mapped trees around each sample point to develop an index of neighborhood effects (NI). Field data and simulation modeling were used to test hypotheses that the mean and heterogeneity of resource availability would increase with patchiness because of greater variation in competitive environments. Our treatments dramatically altered the types and abundances of competitive neighborhoods (NI) in each stand and resulted in significantly nonlinear relationships of light, nitrogen and phosphorus availability to NI. Hence, the distribution of neighborhoods in each treatment had a significant impact on resource availability and heterogeneity. In dense control stands, neighborhood variation had little impact on resource availability, whereas in more open stands (retention treatments), it had large effects on light and modest effects on soil nutrients. Our results demonstrate that tree spatial pattern can affect resource availability and heterogeneity in explainable and predictable ways, and that neighborhood models provide a useful tool for scaling heterogeneity from the individual tree to the stand. These insights are needed to anticipate the outcomes of silvicultural manipulations and should become more holistically integrated into both basic ecological and management science
    corecore