136 research outputs found

    Quadratic Nonlinear Optical Properties of Correlated Chromophores: Cyclic 6,6'-Dinitro-1,1'-Binaphthyl-2,2'-Ethers

    Get PDF
    The first hyperpolarizability, , of a series of cyclic 6,6¿-dinitro-1,1¿-binaphthyl-2,2¿-ethers has been analyzed with hyper-Rayleigh scattering and electric-field-induced second-harmonic-generation and compared with the absorption data and semi-empirical calculations. The results show the critical dependence of on the conformation of the alkoxy donor and the dihedral angle of the binaphthyl unit

    Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores

    Get PDF
    In this article, we describe a series of complexes with electron-rich cis-{Ru^(II)(NH_3)_4}^(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845−4859). They have been isolated as their PF_6− salts and characterized by using various techniques including ^1H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru^(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities β have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d → π^* metal-to-ligand charge-transfer (MLCT) and π → π^* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant β_0 responses as high as ca. 600 × 10^(−30) esu. These pseudo-C_(2v) chromophores show two substantial components of the β tensor, β_(zzz) and β_(zyy), although the relative significance of these varies with the physical method applied. According to HRS, β_(zzz) dominates in all cases, whereas the Stark analyses indicate that β_(zyy) is dominant in the shorter chromophores, but β_(zzz) and β_(zyy) are similar for the extended species. In contrast, finite field calculations predict that β_(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand π-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880−3891)

    The influence of religious identity and socio-economic status on diet over time, an example from medieval France

    Get PDF
    In Southern France as in other parts of Europe, significant changes occurred in settlement patterns between the end of Antiquity and the beginning of the Middle Ages. Small communities gathered to form, by the tenth century, villages organized around a church. This development was the result of a new social and agrarian organization. Its impact on lifestyles and, more precisely, on diet is still poorly understood. The analysis of carbon and nitrogen isotopes in bone collagen from the inhabitants of the well-preserved medieval rural site Missignac-Saint Gilles le Vieux (fifth to thirteenth centuries, Gard, France) provides insight into their dietary practices and enables a discussion about its transformation over time. A sample of 152 adult individuals dated from 675 to 1175 AD (75 females, 77 males) and 75 specimens from 16 non-human species were analyzed. Results show the exploitation of freshwater, marine, and terrestrial ecosystems as well as various breeding practices specific to each species. The use of both C4 and halophyte plants for feeding domestic animals was also observed. Concerning human dietary practices, a change seemed to occur at the beginning of the tenth century with an increase of δ15N values and a decrease of δ13C values. This corresponds to the introduction of a significant amount of freshwater resources into the diet and could be related to the evolution of the Catholic doctrine. A concomitant diversification of access to individual food resources was also observed, probably linked to the increased diversity of practice inside a population otherwise perceived as one community

    Dynamics of soil organic carbon following land-use change: insights from stable C-isotope analysis in black soil of Northeast China

    Get PDF
    Intensive soil tillage is a significant factor in soil organic matter decline in cultivated soils. Both cultivation abandonment and foregoing tillage have been encouraged in the past 30 years to reduce greenhouse gas emissions and soil erosion. However, the dynamic processes of soil organic carbon (SOC) in areas of either continuous cultivation or abandonment remain unclear and inconsistent. Our aims were to assess and model the dynamic processes of SOC under continuous tillage and after cultivation abandonment in the black soil of Northeast China. Soil profiles were collected of cultivated or abandoned land with cultivation history of 0–100 years. An isotope mass balance equation was used to calculate the proportion of SOC derived from corn debris (C4) and from natural vegetation (C3) to deduce the dynamic process. Approximately 40% of SOC in the natural surface soil (0–10 cm) was eroded in the first 5 years of cultivation, increasing to about 75% within 40 years, before a slow recovery. C4 above 30 cm soil depth increased by 4.5%–5% or 0.11–0.12 g·kg−1 on average per year under continuous cultivation, while it decreased by approximately 0.34% annually in the surface soil after cultivation abandonment. The increase in the percentage of C4 was fitted to a linear equation with given intercepts in the upper 30 cm of soil in cultivated land. A significant relationship between the change of C4 and time was found only in the surface soil after abandonment of cultivation. These results demonstrate the loss and accumulation of corn-derived SOC in surface black soil of Northeast China under continuous tillage or cultivation abandonment

    Nitrogen and Carbon Isotopic Dynamics of Subarctic Soils and Plants in Southern Yukon Territory and its Implications for Paleoecological and Paleodietary Studies

    Get PDF
    We examine here the carbon and nitrogen isotopic compositions of bulk soils (8 topsoil and 7 subsoils, including two soil profiles) and five different plant parts of 79 C3 plants from two main functional groups: herbs and shrubs/subshrubs, from 18 different locations in grasslands of southern Yukon Territory, Canada (eastern shoreline of Kluane Lake and Whitehorse area). The Kluane Lake region in particular has been identified previously as an analogue for Late Pleistocene eastern Beringia. All topsoils have higher average total nitrogen δ15N and organic carbon δ13C than plants from the same sites with a positive shift occurring with depth in two soil profiles analyzed. All plants analyzed have an average whole plant δ13C of −27.5 ± 1.2 ‰ and foliar δ13C of ±28.0 ± 1.3 ‰, and average whole plant δ15N of −0.3 ± 2.2 ‰ and foliar δ15N of ±0.6 ± 2.7 ‰. Plants analyzed here showed relatively smaller variability in δ13C than δ15N. Their average δ13C after suitable corrections for the Suess effect should be suitable as baseline for interpreting diets of Late Pleistocene herbivores that lived in eastern Beringia. Water availability, nitrogen availability, spacial differences and intra-plant variability are important controls on δ15N of herbaceous plants in the study area. The wider range of δ15N, the more numerous factors that affect nitrogen isotopic composition and their likely differences in the past, however, limit use of the modern N isotopic baseline for vegetation in paleodietary models for such ecosystems. That said, the positive correlation between foliar δ15N and N content shown for the modern plants could support use of plant δ15N as an index for plant N content and therefore forage quality. The modern N isotopic baseline cannot be applied directly to the past, but it is prerequisite to future efforts to detect shifts in N cycling and forage quality since the Late Pleistocene through comparison with fossil plants from the same region

    Estimating the Diets of Animals Using Stable Isotopes and a Comprehensive Bayesian Mixing Model

    Get PDF
    Using stable isotope mixing models (SIMMs) as a tool to investigate the foraging ecology of animals is gaining popularity among researchers. As a result, statistical methods are rapidly evolving and numerous models have been produced to estimate the diets of animals—each with their benefits and their limitations. Deciding which SIMM to use is contingent on factors such as the consumer of interest, its food sources, sample size, the familiarity a user has with a particular framework for statistical analysis, or the level of inference the researcher desires to make (e.g., population- or individual-level). In this paper, we provide a review of commonly used SIMM models and describe a comprehensive SIMM that includes all features commonly used in SIMM analysis and two new features. We used data collected in Yosemite National Park to demonstrate IsotopeR's ability to estimate dietary parameters. We then examined the importance of each feature in the model and compared our results to inferences from commonly used SIMMs. IsotopeR's user interface (in R) will provide researchers a user-friendly tool for SIMM analysis. The model is also applicable for use in paleontology, archaeology, and forensic studies as well as estimating pollution inputs
    corecore