1,775 research outputs found

    Elastic deformation of a fluid membrane upon colloid binding

    Full text link
    When a colloidal particle adheres to a fluid membrane, it induces elastic deformations in the membrane which oppose its own binding. The structural and energetic aspects of this balance are theoretically studied within the framework of a Helfrich Hamiltonian. Based on the full nonlinear shape equations for the membrane profile, a line of continuous binding transitions and a second line of discontinuous envelopment transitions are found, which meet at an unusual triple point. The regime of low tension is studied analytically using a small gradient expansion, while in the limit of large tension scaling arguments are derived which quantify the asymptotic behavior of phase boundary, degree of wrapping, and energy barrier. The maturation of animal viruses by budding is discussed as a biological example of such colloid-membrane interaction events.Comment: 14 pages, 9 figures, REVTeX style, follow-up on cond-mat/021242

    Solid-phase-assisted synthesis of targeting peptide-PEG-oligo(ethane amino)amides for receptor-mediated gene delivery.

    Get PDF
    In the forthcoming era of cancer gene therapy, efforts will be devoted to the development of new efficient and non-toxic gene delivery vectors. In this regard, the use of Fmoc/Boc-protected oligo(ethane amino)acids as building blocks for solid-phase-supported assembly represents a novel promising approach towards fully controlled syntheses of effective gene vectors. Here we report on the synthesis of defined polymers containing the following: (i) a plasmid DNA (pDNA) binding domain of eight succinoyl-tetraethylenpentamine (Stp) units and two terminal cysteine residues; (ii) a central polyethylene glycol (PEG) chain (with twenty-four oxyethylene units) for shielding; and (iii) specific peptides for targeting towards cancer cells. Peptides B6 and c(RGDfK), which bind transferrin receptor and αvβ3 integrin, respectively, were chosen because of the high expression of these receptors in many tumoral cells. This study shows the feasibility of designing these kinds of fully controlled vectors and their success for targeted pDNA-based gene transfer

    Epidermal Growth Factor–PEG Functionalized PAMAM-Pentaethylenehexamine Dendron for Targeted Gene Delivery Produced by Click Chemistry

    Get PDF
    Aim of this study was the site-specific conjugation of an epidermal growth factor (EGF)-polyethylene glycol (PEG) chain by click chemistry onto a poly(amido amine) (PAMAM) dendron, as a key step toward defined multifunctional carriers for targeted gene delivery. For this purpose, at first propargyl amine cored PAMAM dendrons with ester ends were synthesized. The chain terminal ester groups were then modified by oligoamines with different secondary amino densities. The oligoamine-modified PAMAM dendrons were well biocompatible, as demonstrated in cytotoxicity assays. Among the different oligoamine-modified dendrons, PAMAM-pentaethylenehexamine (PEHA) dendron polyplexes displayed the best gene transfer ability. Conjugation of PAMAM-PEHA dendron with PEG spacer was conducted via click reaction, which was performed before amidation with PEHA. The resultant PEG-PAMAM-PEHA copolymer was then coupled with EGF ligand. pDNA transfections in HuH-7 hepatocellular carcinoma cells showed a 10-fold higher efficiency with the polyplexes containing conjugated EGF as compared to the ligand-free ones, demonstrating the concept of ligand targeting. Overall gene transfer efficiencies, however, were moderate, suggesting that additional measures for overcoming subsequent intracellular bottlenecks in delivery have to be taken

    Small poly-L-lysines improve cationic lipid-mediated gene transfer in vascular cells in vitro and in vivo

    Get PDF
    The potential of two small poly-L-lysines ( sPLLs), low molecular weight sPLL ( LMW-L) containing 7 - 30 lysine residues and L18 with 18 lysine repeats, to enhance the efficiency of liposome-mediated gene transfer ( GT) with cationic lipid DOCSPER {[}1,3- dioleoyloxy- 2-( N-5-carbamoyl-spermine)-propane] in vascular smooth muscle cells ( SMCs) was investigated. Dynamic light scattering was used for determination of particle size. Confocal microscopy was applied for colocalization studies of sPLLs and plasmid DNA inside cells. GT was performed in proliferating and quiescent primary porcine SMCs in vitro and in vivo in porcine femoral arteries. At low ionic strength, sPLLs formed small complexes with DNA ( 50 100 nm). At high ionic strength, large complexes ( 11 mu m) were observed without any significant differences in particle size between lipoplexes ( DOCSPER/ DNA) and lipopolyplexes ( DOCSPER/ sPLL/ DNA). Both sPLLs were colocalized with DNA inside cells 24 h after transfection, protecting DNA against degradation. DOCSPER/ sPLL/ DNA formulations enhanced GT in vitro up to 5- fold, in a porcine model using local periadventitial application up to 1.5- fold. Both sPLLs significantly increased liposome- mediated GT. Poly-L-lysine L18 was superior to LMW-L since it enabled maximal GT at a 10-fold lower concentration. Thus, sPLLs may serve as enhancers for GT applications in SMCs in vitro and in vivo using local delivery. Copyright (c) 2007 S. Karger AG, Basel

    New Watermarking/Encryption Method for Medical Imaging FULL Protection in m-Health

    Get PDF
    In this paper, we present a new method for medical images security dedicated to m-Health based on a combination between a novel semi reversible watermarking approach robust to JPEG compression, a new proposed fragile watermarking and a new proposed encryption algorithm. The purpose of the combination of these three proposed algorithms (encryption, robust and fragile watermarking) is to ensure the full protection of medical image, its information and its report in terms of confidentiality and reliability (authentication and integrity). A hardware implementation to evaluate our system is done using the Texas instrument C6416 DSK card by converting m-files to C/C++ using MATLAB coder. Our m-health security system is then run on the android platform. Experimental results show that the proposed algorithm can achieve high security with good performance

    Development of Degradable, pH‐Sensitive Star Vectors for Enhancing the Cytoplasmic Delivery of Nucleic Acids

    Full text link
    The report describes the synthesis of degradable, pH‐sensitive, membrane‐destabilizing, star‐shaped polymers where copolymers of hydrophobic hexyl methacrylate (HMA) and 2‐(dimethylamino)ethyl methacrylate (DMAEMA) monomers are grafted from the secondary face of a beta‐cyclodextrin (β‐CD) core via acid‐labile hydrazone linkages using atom transfer radical polymerization. The effect of the graft's molecular weight, HMA/DMAEMA molar ratio, and the fraction of DMAEMA converted to cationic N,N,N‐trimethylaminoethyl methacrylate (TMAEMA) monomers on polymer's transfection capacity is systematically investigated. Results show that all star‐shaped polymers condense anti‐GAPDH silencing RNA (siRNA) into nanosized particles at +/‐ ratio ≤ 4:1. Star polymers with shorter (25kDa) P(HMA‐ co ‐DMAEMA‐ co ‐TMAEMA) grafts are more efficient and less cytotoxic than carriers with longer (40kDa) grafts. The results show that increasing the ratio of hydrophobic HMA monomers in graft's composition higher than 50 mole% dramatically reduces polymer's aqueous solubility and abolishes their transfection capacity. Further, retention of DMAEMA monomers in graft's composition provide a buffering capacity that enhanced the endosomal escape and transfection capacity of the polymers. These systematic studies show that β‐CD‐P(HMA‐ co ‐DMAEMA‐ co ‐TMAEMA) 4.8 polymer with a 25 kDa average graft's molecular weight and a 50/25/25 ratio of HMA/DMAEMA/TMAEMA monomers is the most efficient carrier in delivering the siRNA cargo into the cytoplasm of epithelial cancer cells. A series of degradable, pH‐sensitive, membrane‐destabilizing, star‐shaped polymers is synthesized. Star polymers are engineered to “sense” the drop in endosomal pH, which triggers the hydrolysis of acid‐labile hydrazone linkages and release of membrane‐active grafts that rupture the endosomal membrane and release the loaded siRNA cargo into the cytoplasm to produce the desired knockdown of targeted gene expression at both the mRNA and protein levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99666/1/3885_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99666/2/adfm_201203762_sm_suppl.pd

    Systemic in vivo delivery of siRNA to tumours using combination of polyethyleneimine and transferrin–polyethyleneimine conjugates

    Get PDF
    Materials for delivery of oligonucleotides need to be simple to produce yet effective in vivo to be considered for clinical applications. Formulations of biomaterials based on combinations of existing demonstrated polymeric gene carriers with targeted derivatives are potential candidates for rapid translation but have not been fully explored for siRNA applications. Here we investigated formulations based on derivatised PEI for delivery of siRNA to gastrointestinal cancer cells. siRNA was complexed with linear PEI alone or with a mixture of linear PEI and transferrin-conjugated branched PEI (TfPEI), and knockdown of reporter genes was investigated. Overall, the in vitro use of complexes containing TfPEI resulted in up to 93% knockdown at 72 h post-transfection. Sustained knockdown was also achieved in a bioluminescent xenograft model. When complexes were delivered intratumorally, a 43% reduction in luminescence was achieved in the treated group compared with the control group 48 h after treatment. For systemic administration, only the intraperitoneal route, and not the intravenous route was effective, with 49% knockdown achieved at 72 h and sustained up to 144 h (44%) after a single administration of TfPEI-complexed siRNA. No toxicity or induction of the interferon response was observed. These findings demonstrate that simple formulations of transferrin-conjugated PEI with a ‘parent’ polymer such as linear PEI have potential as a method for therapeutic delivery of siRNA when administered either intratumorally or systemically

    Chitosan for gene delivery and orthopedic tissue engineering applications.

    Get PDF
    Gene therapy involves the introduction of foreign genetic material into cells in order exert a therapeutic effect. The application of gene therapy to the field of orthopaedic tissue engineering is extremely promising as the controlled release of therapeutic proteins such as bone morphogenetic proteins have been shown to stimulate bone repair. However, there are a number of drawbacks associated with viral and synthetic non-viral gene delivery approaches. One natural polymer which has generated interest as a gene delivery vector is chitosan. Chitosan is biodegradable, biocompatible and non-toxic. Much of the appeal of chitosan is due to the presence of primary amine groups in its repeating units which become protonated in acidic conditions. This property makes it a promising candidate for non-viral gene delivery. Chitosan-based vectors have been shown to transfect a number of cell types including human embryonic kidney cells (HEK293) and human cervical cancer cells (HeLa). Aside from its use in gene delivery, chitosan possesses a range of properties that show promise in tissue engineering applications; it is biodegradable, biocompatible, has anti-bacterial activity, and, its cationic nature allows for electrostatic interaction with glycosaminoglycans and other proteoglycans. It can be used to make nano- and microparticles, sponges, gels, membranes and porous scaffolds. Chitosan has also been shown to enhance mineral deposition during osteogenic differentiation of MSCs in vitro. The purpose of this review is to critically discuss the use of chitosan as a gene delivery vector with emphasis on its application in orthopedic tissue engineering

    The Possible "Proton Sponge " Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH.

    Get PDF
    Polycations such as polyethylenimine (PEI) are used in many novel nonviral vector designs and there are continuous efforts to increase our mechanistic understanding of their interactions with cells. Even so, the mechanism of polyplex escape from the endosomal/lysosomal pathway after internalization is still elusive. The “proton sponge ” hypothesis remains the most generally accepted mechanism, although it is heavily debated. This hypothesis is associated with the large buffering capacity of PEI and other polycations, which has been interpreted to cause an increase in lysosomal pH even though no conclusive proof has been provided. In the present study, we have used a nanoparticle pH sensor that was developed for pH measurements in the endosomal/lysosomal pathway. We have carried out quantitative measurements of lysosomal pH as a function of PEI content and correlate the results to the “proton sponge ” hypothesis. Our measurements show that PEI does not induce change in lysosomal pH as previously suggested and quantification of PEI concentrations in lysosomes makes it uncertain that the “proton sponge ” effect is the dominant mechanism of polyplex escape
    corecore