431 research outputs found

    In vivo endoscopic autofluorescence microspectro-imaging of bronchi and alveoli

    Full text link
    Fibered confocal fluorescence microscopy (FCFM) is a new technique that can be used during a bronchoscopy to analyze the nature of the human bronchial and alveolar mucosa fluorescence microstructure. An endoscopic fibered confocal fluorescence microscopy system with spectroscopic analysis capability was developed allowing real-time, simultaneous images and emission spectra acquisition at 488 nm excitation using a flexible miniprobe that could be introduced into small airways. This flexible 1.4 mm miniprobe can be introduced into the working channel of a flexible endoscope and gently advanced through the bronchial tree to the alveoli. FCFM in conjunction with bronchoscopy is able to image the in vivo autofluorescence structure of the bronchial mucosae but also the alveolar respiratory network outside of the usual field of view. Microscopic and spectral analysis showed that the signal mainly originates from the elastin component of the bronchial subepithelial layer. In non smokers, the system images the elastin backbone of the aveoli. In active smokers, a strong autofluorescence signal appears from alveolar macrophages. The FCFM technique appears promising for in vivo exploration of the bronchial and alveolar extracellular matrix

    Ready, Set, BABY Live Virtual Prenatal Breastfeeding Education for COVID-19

    Get PDF
    The COVID-19 pandemic has introduced unforeseen challenges in the delivery of lactation training, education, and skilled support worldwide. The World Health Organization (WHO) has developed global recommendations for the protection, promotion, and support of breastfeeding when COVID-19 is suspected or confirmed (World Health Organization, 2020). This interim guidance, which is grounded in the best available clinical evidence and epidemiology, brings attention to the importance of integrating breastfeeding education and skilled lactation support into the COVID-19 pandemic response (Gribble, 2018; UNICEF, 2020)

    A Leishmania secretion system for the expression of major ampullate spidroin mimics

    Get PDF
    Spider major ampullate silk fibers have been shown to display a unique combination of relatively high fracture strength and toughness compared to other fibers and show potential for tissue engineering scaffolds. While it is not possible to mass produce native spider silks, the potential ability to produce fibers from recombinant spider silk fibers could allow for an increased innovation rate within tissue engineering and regenerative medicine. In this pilot study, we improved upon a prior fabrication route by both changing the expression host and additives to the fiber pulling precursor solution to improve the performance of fibers. The new expression host for producing spidroin protein mimics, protozoan parasite Leishmania tarentolae, has numerous advantages including a relatively low cost of culture, rapid growth rate and a tractable secretion pathway. Tensile testing of hand pulled fibers produced from these spidroin-like proteins demonstrated that additives could significantly modify the fiber’s mechanical and/or antimicrobial properties. Cross-linking the proteins with glutaraldehyde before fiber pulling resulted in a relative increase in tensile strength and decrease in ductility. The addition of ampicillin into the spinning solution resulted in the fibers being able to inhibit bacterial growth

    Virulence Potential of Staphylococcus aureus Strains Isolated From Diabetic Foot Ulcers: A new paradigm

    Get PDF
    OBJECTIVE—The purpose of this study was to assess the virulence potential of Staphylococcus aureus strains isolated from diabetic foot ulcers and to discriminate noninfected from infected ulcers

    Chapter X: The Tour de France: a success story in spite of competitive imbalance and doping

    No full text
    International audienceThe chapter goes as follows. In the first section it is demonstrated how the Tour de France is a high quality product. This is a result from its accurate design, its management, its economic model and its finance structure, both in comparison to other mega-sporting events and with reference to tournament theory. It is not easy to assess the competitive balance in the Tour de France since, as was demonstrated in chapter 10, it is at the same time an individual and a team sport contest. After reviewing some results published in literature so far, a new metrics for evaluating competitive balanced in the Tour de France is presented in section 2. Finally, the Tour de France cannot ignore doping as a potential threat to fan attendance and TV viewing. We therefore discuss the issue of doping and a new procedure to deal with doping in section 3

    The Sentinel-3 Mission Performance Center

    Get PDF
    As part of the Sentinel-3 mission and in order to ensure the highest quality of products, ESA in cooperation with EUMETSAT has set up the Sentinel-3 Mission Performance Centre (S-3 MPC). This facility is part of the Payload Data Ground Segment (PDGS) and aims at controlling the quality of all generated products, from L0 to L2. The S-3 MPC is composed of a Coordinating Centre (CC), where the core infrastructure is hosted, which is in charge of the main routine activities (especially the quality control of data) and the overall service management. Expert Support Laboratories (ESLs) are involved in calibration and validation activities and provide specific assessment of the products (e.g., analysis of trends, ad hoc analysis of anomalies, etc.). The S-3 MPC interacts with the Processing Archiving Centres (PACs) and the Marine centre at EUMETSAT

    Modulating the photoluminescence of bridged silsesquioxanes incorporating Eu(3+)-complexed n,n '-diureido-2,2 '-bipyridine isomers: application for luminescent solar concentrators

    Get PDF
    Two new urea-bipyridine derived bridged organosilanes (P5 and P6) have been synthesized and their hydrolysis-condensation under nucleophilic catalysis in the presence of Eu(3+) salts led to luminescent bridged silsesquioxanes (M5-Eu and M6-Eu). An important loading of Eu(3+) (up to 11%(w)) can be obtained for the material based on the 6,6'-isomer. Indeed the photoluminescence properties of these materials, that have been investigated in depth (photoluminescence (PL), quantum yield, lifetimes), show a significantly different complexation mode of the Eu(3+) ions for M6-Eu, compared with M4-Eu (obtained from the already-reported 4,4'-isomer) and M5-Eu. Moreover, M6-Eu exhibits the highest absolute emission quantum yield value (0.18 +/- 0.02) among these three materials. The modification of the sol composition upon the addition of a malonamide derivative led to similar luminescent features but with an increased quantum yield (026 +/- 0.03). In addition, M6-Eu can be processed as thin films by spin-coating on glass substrates, leading to plates coated by a thin layer (similar to 54 nm) of Eu(3+)-containing hybrid silica exhibiting one of the highest emission quantum yields reported so far for films of Eu(3+)-containing hybrids (0.34 +/- 0.03) and an interesting potential as new luminescent solar concentrators (LSCs) with an optical conversion efficiency of similar to 4%. The ratio between the light guided to the film edges and the one emitted by the surface of the film was quantified through the mapping of the intensity of the red pixels (in the RGB color model) from a film image. This quantification enabled a more accurate estimation of the transport losses due to the scattering of the emitted light in the film (0.40), thereby correcting the initial optical conversion efficiency to a value of 1.7%.FCT - PTDC/CTM/101324/2008COMPETEFEDE
    • …
    corecore