173 research outputs found

    Using Archetypal Metaphor to Analyze Cultural Landscape: A Chlilean Case Study

    Get PDF
    In our increasingly complex and interactive world, it becomes ever more difficult to isolate and map the cultural identity of any given region, as bounded and contained cultural places have become a rare occurrence. To further complicate the matter, perspectives, loyalties, and identities shift with time, and appear to shift with circumstance. While cultural conflict per se was not the subject of this study, the ability to quantify differing cultural profiles in one location relative to another may be the beginning of the development of a tool for assessing degrees of difference in neighboring regions, and thus diagnosing the potential for conflict escalation. The Compass System, a holistic model that uses eight archetypal categories to observe and evaluate complex systems, was used for this study. In this exploratory study, 33 restaurants in 5 cities in Chile were rated in these eight categories as perceived by a team of outsider observers. The predominant qualities of each city sampled, determined solely from the sampling of its restaurants, did match, in a general sense, qualities of the city that were otherwise observable. This matching indicates that a tool such as the Compass System can be used to gather a collective regional profile from small sampling, such as an area’s restaurants. Potential uses for further research and development could include conflict management and assessing risk for social instability or escalation of violence

    Direct interaction of TrkA/CD44v3 is essential for NGF-promoted aggressiveness of breast cancer cells

    Get PDF
    Background CD44 is a multifunctional membrane glycoprotein. Through its heparan sulfate chain, CD44 presents growth factors to their receptors. We have shown that CD44 and Tropomyosin kinase A (TrkA) form a complex following nerve growth factor (NGF) induction. Our study aimed to understand how CD44 and TrkA interact and the consequences of inhibiting this interaction regarding the pro-tumoral effect of NGF in breast cancer. Methods After determining which CD44 isoforms (variants) are involved in forming the TrkA/CD44 complex using proximity ligation assays, we investigated the molecular determinants of this interaction. By molecular modeling, we isolated the amino acids involved and confirmed their involvement using mutations. A CD44v3 mimetic peptide was then synthesized to block the TrkA/CD44v3 interaction. The effects of this peptide on the growth, migration and invasion of xenografted triple-negative breast cancer cells were assessed. Finally, we investigated the correlations between the expression of the TrkA/CD44v3 complex in tumors and histo-pronostic parameters. Results We demonstrated that isoform v3 (CD44v3), but not v6, binds to TrkA in response to NGF stimulation. The final 10 amino acids of exon v3 and the TrkA H112 residue are necessary for the association of CD44v3 with TrkA. Functionally, the CD44v3 mimetic peptide impairs not only NGF-induced RhoA activation, clonogenicity, and migration/invasion of breast cancer cells in vitro but also tumor growth and metastasis in a xenograft mouse model. We also detected TrkA/CD44v3 only in cancerous cells, not in normal adjacent tissues. Conclusion Collectively, our results suggest that blocking the CD44v3/TrkA interaction can be a new therapeutic option for triple-negative breast cancers

    Recruitment of Slp-76 to the Membrane and Glycolipid-Enriched Membrane Microdomains Replaces the Requirement for Linker for Activation of T Cells in T Cell Receptor Signaling

    Get PDF
    Two hematopoietic-specific adapters, src homology 2 domain–containing leukocyte phosphoprotein of 76 kD (SLP-76) and linker for activation of T cells (LAT), are critical for T cell development and T cell receptor (TCR) signaling. Several studies have suggested that SLP-76 and LAT function coordinately to promote downstream signaling. In support of this hypothesis, we find that a fraction of SLP-76 localizes to glycolipid-enriched membrane microdomains (GEMs) after TCR stimulation. This recruitment of SLP-76 requires amino acids 224–244. The functional consequences of targeting SLP-76 to GEMs for TCR signaling are demonstrated using a LAT/SLP-76 chimeric protein. Expression of this construct reconstitutes TCR-inducted phospholipase Cγ1 phosphorylation, extracellular signal–regulated kinase activation, and nuclear factor of activated T cells (NFAT) promoter activity in LAT-deficient Jurkat T cells (J.CaM2). Mutation of the chimeric construct precluding its recruitment to GEMs diminishes but does not eliminate its ability to support TCR signaling. Expression of a chimera that lacks SLP-76 amino acids 224–244 restores NFAT promoter activity, suggesting that if localized, SLP-76 does not require an association with Gads to promote T cell activation. In contrast, mutation of the protein tyrosine kinase phosphorylation sites of SLP-76 in the context of the LAT/SLP-76 chimera abolishes reconstitution of TCR function. Collectively, these experiments show that optimal TCR signaling relies on the compartmentalization of SLP-76 and that one critical function of LAT is to bring SLP-76 and its associated proteins to the membrane

    Syndecan-1 regulates the biological activities of interleukin-34

    Get PDF
    IL-34 is a challenging cytokine sharing functional similarities with M-CSF through M-CSFR activation. It also plays a singular role that has recently been explained in the brain, through a binding to the receptor protein tyrosine phosphatase RPTPβ/ζ. The aim of this paper was to look for alternative binding of IL-34 on other cell types. Myeloid cells (HL-60, U-937, THP-1) were used as cells intrinsically expressing M-CSFR, and M-CSFR was expressed in TF-1 and HEK293 cells. IL-34 binding was studied by Scatchard and binding inhibition assays, using 125I-radiolabelled cytokines, and surface plasmon resonance. M-CSFR activation was analysed by Western blot after glycosaminoglycans abrasion, syndecan-1 overexpression or repression and addition of a blocking anti-syndecan antibody. M-CSF and IL-34 induced different patterns of M-CSFR phosphorylations, suggesting the existence of alternative binding for IL-34. Binding experiments and chondroitinase treatment confirmed low affinity binding to chondroitin sulphate chains on cells lacking both M-CSFR and RPTPβ/ζ. Amongst the proteoglycans with chondroitin sulphate chains, syndecan-1 was able to modulate the IL-34-induced M-CSFR signalling pathways. Interestingly, IL-34 induced the migration of syndecan-1 expressing cells. Indeed, IL-34 significantly increased the migration of THP-1 and M2a macrophages that was inhibited by addition of a blocking anti-syndecan-1 antibody. This paper provides evidence of alternative binding of IL-34 to chondroitin sulphates and syndecan-1 at the cell surface that modulates M-CSFR activation. In addition, IL-34-induced myeloid cell migration is a syndecan-1 dependent mechanism

    The Chemotactic Defect in Wiskott-Aldrich Syndrome Macrophages Is Due to the Reduced Persistence of Directional Protrusions

    Get PDF
    Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor that is required for macrophages to directionally migrate towards various chemoattractants. The chemotaxis defect of WASp-deficient cells and its activation by Cdc42 in vivo suggest that WASp plays a role in directional sensing, however, its precise role in macrophage chemotaxis is still unclear. Using shRNA-mediated downregulation of WASp in the murine monocyte/macrophage cell line RAW/LR5 (shWASp), we found that WASp was responsible for the initial wave of actin polymerization in response to global stimulation with CSF-1, which in Dictyostelium discoideum amoebae and carcinoma cells has been correlated with the ability to migrate towards chemoattractants. Real-time monitoring of shWASp cells, as well as WASp−/− bone marrow-derived macrophages (BMMs), in response to a CSF-1 gradient revealed that the protrusions from WASp-deficient cells were directional, showing intact directional sensing. However, the protrusions from WASp-deficient cells demonstrated reduced persistence compared to their respective control shRNA and wild-type cells. Further examination showed that tyrosine phosphorylation of WASp was required for both the first wave of actin polymerization following global CSF-1 stimulation and proper directional responses towards CSF-1. Importantly, the PI3K, Rac1 and WAVE2 proteins were incorporated normally in CSF-1 – elicited protrusions in the absence of WASp, suggesting that membrane protrusion driven by the WAVE2 complex signaling is intact. Collectively, these results suggest that WASp and its phosphorylation play critical roles in coordinating the actin cytoskeleton rearrangements necessary for the persistence of protrusions required for directional migration of macrophages towards CSF-1

    The biological role of interferon-inducible P204 protein in the development of the mononuclear phagocyte system.

    No full text
    The mononuclear phagocyte system (MPS) is a cell population derived from progenitor cells in the bone marrow, and comprising monocytes, macrophages, osteoclasts, dendritic cells, and microglia. Homeostasis of the MPS and response to physiological stress is under the control of signaling molecules and nuclear factors; among them, macrophage-colony-stimulating factor (M-CSF) controls monocyte/macrophage lineage development. Here we discuss the implication of Ifi204, a M-CSF-responsive gene, in the proliferation and differentiation of monocytes/macrophages. Ifi204 is a member of the interferon-inducible p200 family of proteins, and was found to be an important regulator of differentiation of both skeletal and cardiac muscles and osteogenesis. Ifi204 is expressed at the early stages of differentiation of MPS cells and later in the monocyte/macrophage lineage. IFI16, the closest Ifi protein in human, is expressed all along the the monocytic lineage. In MPS cells, Ifi204 expression is induced by interferons but also by various stimuli, independently of the presence of interferon. Enforced expression of p204 in interleukin-3 (IL3)-dependent FD-Fms cell line strongly decreased both IL3- and M-CSF-dependent proliferation and conversely favored macrophage differentiation of FD-Fms cells in response to M-CSF. Altogether, data enlighten a role of Ifi204 as a regulator of monocyte/macrophage differentiation and make possible a connection with other myeloid regulators
    • …
    corecore