72 research outputs found

    Stratospheric NO and NO2 profiles at sunset from analysis of high-resolution balloon-borne infrared solar absorption spectra obtained at 33 deg N and calculations with a time-dependent photochemical model

    Get PDF
    Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported

    Recommended radiative property data for Venusian entry calculations

    Get PDF
    A compilation of experimental and calculated data on the radiative properties species important in Venusian entry is presented. Molecular band systems, atomic lines, free-bound, and free-free continua are considered for the principal radiating species of shock heated carbon dioxide. A limited amount of data pertinent to the species in the ablation layer is also included. The assumption is made that the Venus atmosphere so closely approximates pure CO2 that the inviscid layer radiation is due almost entirely to thermally excited CO2. The only exception is the inclusion of data on the Violet band system of CN. Recommendations are made as to best property values for radiative heating calculations. A review of the basic equations and the relationships of the various emission-absorption gas porperties is also included

    Radiative property data for Venusian entry: A compendium

    Get PDF
    A compilation of experimental and calculated data on the radiative properties of species important in Venusian entry is presented. Molecular band systems, atomic lines, free-bound continua, and free-free continua are considered for the principal radiating species of shock-heated carbon dioxide. Data pertinent to the species in the ablation layer are included. The Venus atmosphere so closely approximates pure carbon dioxide (CO2) that the inviscid layer radiation is due almost entirely to thermally excited CO2. Data are included on the violet band system of the cyanogen radical CN. Recommendations are made as to best property values for radiative heating calculations. A review of the basic equations and the relationships of the various emission-absorption gas properties is included

    Impact of stratospheric aircraft emissions on ozone: A two dimensional model study

    Get PDF
    Atmospheric perturbations caused by the emission of nitrogen oxides from a projected fleet of stratospheric aircraft are studied with a two dimensional chemistry, transport model. Photochemistry of the lower stratosphere, the region where these aircraft may fly, is now known to be influenced by heterogeneous reactions involving sulfuric acid aerosols. This study examines the sensitivity of the atmospheric effects of aircraft to heterogeneous reactions. Information of background aerosols based on the SAGE 2 measurements have been used in the parameterization of the heterogeneous conversion rates. It is found that heterogeneous reactions make the lower stratospheric ozone less sensitive to perturbations in the odd nitrogen level. The calculated reduction in global ozone due to NO(x) injection from a fleet of Mach 2.4 aircraft is 1.28 percent if gas phase reactions only are considered in the model, and 0.06 percent if heterogeneous reactions are included

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    Treatment effects may remain the same even when trial participants differed from the target population

    Get PDF
    Objective RCTs have been criticised for lacking external validity. We assessed whether a trial in people with type I diabetes mellitus (T1DM) mirrored the wider population, and applied sample-weighting methods to assess the impact of differences on our trial's findings. Study design and setting The REPOSE trial was nested within a large UK cohort capturing demographic, clinical and quality of life (QoL) data for people with T1DM undergoing structured diabetes-specific education. We firstly assessed whether our RCT participants were comparable to this cohort using propensity score modelling. Following this we re-weighted the trial population to better match the wider cohort and re-estimated the treatment effect. Results Trial participants differed from the cohort in regards to sex, weight, HbA1c and also QoL and satisfaction with current treatment. Nevertheless, the treatment effects derived from alternative model weightings were similar to that of the original RCT. Conclusions Our RCT participants differed in composition to the wider population but the original findings were unaffected by sampling adjustments. We encourage investigators take steps to address criticisms of generalisability, but doing so is problematic: external data, even if available, may contain limited information and analyses can be susceptible to model misspecification
    corecore