536 research outputs found

    GC3 biology in corn, rice, sorghum and other grasses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The third, or wobble, position in a codon provides a high degree of possible degeneracy and is an elegant fault-tolerance mechanism. Nucleotide biases between organisms at the wobble position have been documented and correlated with the abundances of the complementary tRNAs. We and others have noticed a bias for cytosine and guanine at the third position in a subset of transcripts within a single organism. The bias is present in some plant species and warm-blooded vertebrates but not in all plants, or in invertebrates or cold-blooded vertebrates.</p> <p>Results</p> <p>Here we demonstrate that in certain organisms the amount of GC at the wobble position (GC<sub>3</sub>) can be used to distinguish two classes of genes. We highlight the following features of genes with high GC<sub>3 </sub>content: they (1) provide more targets for methylation, (2) exhibit more variable expression, (3) more frequently possess upstream TATA boxes, (4) are predominant in certain classes of genes (e.g., stress responsive genes) and (5) have a GC<sub>3 </sub>content that increases from 5'to 3'. These observations led us to formulate a hypothesis to explain GC<sub>3 </sub>bimodality in grasses.</p> <p>Conclusions</p> <p>Our findings suggest that high levels of GC<sub>3 </sub>typify a class of genes whose expression is regulated through DNA methylation or are a legacy of accelerated evolution through gene conversion. We discuss the three most probable explanations for GC<sub>3 </sub>bimodality: biased gene conversion, transcriptional and translational advantage and gene methylation.</p

    Irrigated Alfalfa Vaariety Performance, 1999-2002; Kaysville, Utah

    Get PDF
    This report summarizes alfalfa yields from four harvest years of an irrigated trial at the Utah Agricultural Experiment station research farm at Kaysville, Cavis Co

    Chemical genetics of \u3ci\u3ePlasmodium falciparum\u3c/i\u3e

    Get PDF
    Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library—many of which showed potent in vitro activity against drug-resistant P. falciparum strains—and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery

    Analisis dan Perancangan Sistem Akuntansi dengan Model Driven Development (MDD) Pada Konveksi Anemarie

    Get PDF
    Informasi Akuntansi merupakan salah satu alat untuk mengambil keputusan dalam perusahaan.Sistem Informasi Akuntansi dapat memberikan kemudahan dalam menghasilkan informasi yang akurat, tepat waktu dapat dipahami dan teruji.Selain itu, sistem informasi akuntansi dapat memudahkan siklus operasional perusahaan baik dari pembelian, produksi, sampai penjualan.Maka dari uraian itu, peneliti ingin menganalisis dan merancang sistem informasi akuntansi pada usaha yang tidak memiliki sistem informasi akuntansi dan masih melakukan pencatatan secara manual. Peneliti menggunakan data sistem akuntansi Konveksi Anemarie periode April 2017 dan Model Driven Development untuk merancang Sistem Informasi Akuntansi konveksi Anemarie. Hasil pengembangan Sistem Informasi Akuntansi dengan Model Driven Development ini ialah Desain Model Data dengan Entity Relathionship diagram baik secara keseluruhan maupun per subsistem, Desain model Proses dengan Data Flow Diagram, dan desain model output dengan pembuatan interface dari form yang dibutuhka

    Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα

    Get PDF
    © 2012 Samejima et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication dateMitotic chromosome formation involves a relatively minor condensation of the chromatin volume coupled with a dramatic reorganization into the characteristic "X" shape. Here we report results of a detailed morphological analysis, which revealed that chromokinesin KIF4 cooperated in a parallel pathway with condensin complexes to promote the lateral compaction of chromatid arms. In this analysis, KIF4 and condensin were mutually dependent for their dynamic localization on the chromatid axes. Depletion of either caused sister chromatids to expand and compromised the "intrinsic structure" of the chromosomes (defined in an in vitro assay), with loss of condensin showing stronger effects. Simultaneous depletion of KIF4 and condensin caused complete loss of chromosome morphology. In these experiments, topoisomerase IIα contributed to shaping mitotic chromosomes by promoting the shortening of the chromatid axes and apparently acting in opposition to the actions of KIF4 and condensins. These three proteins are major determinants in shaping the characteristic mitotic chromosome morphology

    ButterflyBase: a platform for lepidopteran genomics

    Get PDF
    With over 100 000 species and a large community of evolutionary biologists, population ecologists, pest biologists and genome researchers, the Lepidoptera are an important insect group. Genomic resources [expressed sequence tags (ESTs), genome sequence, genetic and physical maps, proteomic and microarray datasets] are growing, but there has up to now been no single access and analysis portal for this group. Here we present ButterflyBase (http://www.butterflybase.org), a unified resource for lepidopteran genomics. A total of 273 077 ESTs from more than 30 different species have been clustered to generate stable unigene sets, and robust protein translations derived from each unigene cluster. Clusters and their protein translations are annotated with BLAST-based similarity, gene ontology (GO), enzyme classification (EC) and Kyoto encyclopaedia of genes and genomes (KEGG) terms, and are also searchable using similarity tools such as BLAST and MS-BLAST. The database supports many needs of the lepidopteran research community, including molecular marker development, orthologue prediction for deep phylogenetics, and detection of rapidly evolving proteins likely involved in host–pathogen or other evolutionary processes. ButterflyBase is expanding to include additional genomic sequence, ecological and mapping data for key species
    corecore