137 research outputs found

    Carcinoma hepatocelular y linfoma folicular en paciente cirrótico por virus de la hepatitis C

    Get PDF
    El virus de la hepatitis C (VHC) tiene demostrado poder oncogénico. Su asociación con Carcinoma Hepatocelular (CHC) en pacientes con cirrosis hepática es bien conocida como también con el Linfoma no Hodgkin indolente. Es poco frecuente que estas tres entidades se presenten simultáneamente. El objetivo de este reporte es describir la presentación clínica, la metodología diagnóstica y la evolución de un paciente que presentó concomitantemente infección crónica por virus C, cirrosis, hepatocarcinoma y linfoma no Hodgkin.Facultad de Ciencias Médica

    Carcinoma hepatocelular y linfoma folicular en paciente cirrótico por virus de la hepatitis C

    Get PDF
    El virus de la hepatitis C (VHC) tiene demostrado poder oncogénico. Su asociación con Carcinoma Hepatocelular (CHC) en pacientes con cirrosis hepática es bien conocida como también con el Linfoma no Hodgkin indolente. Es poco frecuente que estas tres entidades se presenten simultáneamente. El objetivo de este reporte es describir la presentación clínica, la metodología diagnóstica y la evolución de un paciente que presentó concomitantemente infección crónica por virus C, cirrosis, hepatocarcinoma y linfoma no Hodgkin.Facultad de Ciencias Médica

    Reduced pancreatic β-cell mass is associated with decreased FoxO1 and Erk1/2 protein phosphorylation in low-protein malnourished rats

    Get PDF
    A low-protein diet leads to functional and structural pancreatic islet alterations, including islet hypotrophy. Insulin-signaling pathways are involved in several adaptive responses by pancreatic islets. We determined the levels of some insulin-signaling proteins related to pancreatic islet function and growth in malnourished rats. Adult male Wistar rats (N = 20 per group) were fed a 17% protein (normal-protein diet; NP) or 6% protein (low-protein diet; LP), for 8 weeks. At the end of this period, blood glucose and serum insulin and albumin levels were measured. The morphometric parameters of the endocrine pancreas and the content of some proteins in islet lysates were determined. The β-cell mass was significantly reduced (≅65%) in normoglycemic but hypoinsulinemic LP rats compared to NP rats. Associated with these alterations, a significant 30% reduction in insulin receptor substrate-1 and a 70% increase in insulin receptor substrate-2 protein content were observed in LP islets compared to NP islets. The phosphorylated serine-threonine protein kinase (pAkt)/Akt protein ratio was similar in LP and NP islets. The phosphorylated forkhead-O1 (pFoxO1)/FoxO1 protein ratio was decreased by 43% in LP islets compared to NP islets (P < 0.05). Finally, the ratio of phosphorylated-extracellular signal-related kinase 1/2 (pErk1/2) to total Erk1/2 protein levels was decreased by 71% in LP islets compared to NP islets (P < 0.05). Therefore, the reduced β-cell mass observed in LP rats is associated with the reduction of phosphorylation in mitogenic-related signals, FoxO1 and Erk proteins. The cause/effect basis of this association remains to be determined4210935941FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2/04310-4; 04/11684-9; 03/10829-

    Eosinofilia en sala de clínica médica

    Get PDF
    La eosinofilia en sangre periférica es un trastorno frecuente en nuestro medio. Las causas son numerosas y dentro de ellas se encuentran las infecciones parasitarias, atopia, reacciones adversas a drogas y neoplasias tanto de órganos sólidos como hematológicas. El objetivo de este estudio es determinar las etiologías más frecuentes de eosinofilia en pacientes que ingresaron o cursaron internación en sala de clínica médica en el último año.Facultad de Ciencias Médica

    Augmented β-cell function and mass in glucocorticoid-treated rodents are associated with increased islet ir-β /AKT/mTOR and decreased AMPK/ACC and AS160 signaling

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOGlucocorticoid (GC) therapies may adversely cause insulin resistance (IR) that lead to a compensatory hyperinsulinemia due to insulin hypersecretion. The increased β-cell function is associated with increased insulin signaling that has the protein kinase B (AKT) substrate with 160 kDa (AS160) as an important downstream AKT effector. In muscle, both insulin and AMP-activated protein kinase (AMPK) signaling phosphorylate and inactivate AS160, which favors the glucose transporter (GLUT)-4 translocation to plasma membrane. Whether AS160 phosphorylation is modulated in islets from GC-treated subjects is unknown. For this, two animal models, Swiss mice and Wistar rats, were treated with dexamethasone (DEX) (1 mg/kg body weight) for 5 consecutive days. DEX treatment induced IR, hyperinsulinemia, and dyslipidemia in both species, but glucose intolerance and hyperglycemia only in rats. DEX treatment caused increased insulin secretion in response to glucose and augmented β-cell mass in both species that were associated with increased islet content and increased phosphorylation of the AS160 protein. Protein AKT phosphorylation, but not AMPK phosphorylation, was found significantly enhanced in islets from DEX-treated animals. We conclude that the augmented β-cell function developed in response to the GC-induced IR involves inhibition of the islet AS160 protein activity.Glucocorticoid (GC) therapies may adversely cause insulin resistance (IR) that lead to a compensatory hyperinsulinemia due to insulin hypersecretion. The increased β-cell function is associated with increased insulin signaling that has the protein kinase2014114FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOsem informaçãosem informaçã

    Enhanced glucose-induced intracellular signaling promotes insulin hypersecretion: Pancreatic beta-cell functional adaptations in a model of genetic obesity and prediabetes

    Get PDF
    Obesity is associated with insulin resistance and is known to be a risk factor for type-2 diabetes. In obese individuals, pancreatic beta-cells try to compensate for the increased insulin demand in order to maintain euglycemia. Most studies have reported that this adaptation is due to morphological changes. However, the involvement of beta-cell functional adaptations in this process needs to be clarified. For this purpose, we evaluated different key steps in the glucose-stimulated insulin secretion (GSIS) in intact islets from female ob/ob obese mice and lean controls. Obese mice showed increased body weight, insulin resistance, hyperinsulinemia, glucose intolerance and fed hyperglycemia. Islets from ob/ob mice exhibited increased glucose-induced mitochondrial activity, reflected by enhanced NAD(P)H production and mitochondrial membrane potential hyperpolarization. Perforated patch-clamp examination of beta-cells within intact islets revealed several alterations in the electrical activity such as increased firing frequency and higher sensitivity to low glucose concentrations. A higher intracellular Ca2+ mobilization in response to glucose was also found in ob/ob islets. Additionally, they displayed a change in the oscillatory pattern and Ca2+ signals at low glucose levels. Capacitance experiments in intact islets revealed increased exocytosis in individual ob/ob beta-cells. All these up-regulated processes led to increased GSIS. In contrast, we found a lack of beta-cell Ca2+ signal coupling, which could be a manifestation of early defects that lead to beta-cell malfunction in the progression to diabetes. These findings indicate that beta-cell functional adaptations are an important process in the compensatory response to obesity.This work was supported by grants from the Spanish Ministerio de Ciencia e Innovación (BFU2013-42789-P; BFU2011-28358)This work was supported by grants from the Generalitat Valenciana (PROMETEO/2011/080)This work was supported by grants from the European Foundation for the Study Diabetes (EFSD/BI Basic Programme

    Interleukin-6 increases the expression and activity of insulin-degrading enzyme

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOImpairment of the insulin-degrading enzyme (IDE) is associated with obesity and type 2 diabetes mellitus (T2DM). Here, we used 4-mo-old male C57BL/6 interleukin-6 (IL-6) knockout mice (KO) to investigate the role of this cytokine on IDE expression and activity. IL-6 KO mice displayed lower insulin clearance in the liver and skeletal muscle, compared with wild type (WT), due to reduced IDE expression and activity. We also observed that after 3-h incubation, IL-6, 50 and 100 ng ml(-1), increased the expression of IDE in HEPG2 and C2C12 cells, respectively. In addition, during acute exercise, the inhibition of IL-6 prevented an increase in insulin clearance and IDE expression and activity, mainly in the skeletal muscle. Finally, IL-6 and IDE concentrations were significantly increased in plasma from humans, after an acute exercise, compared to pre-exercise values. Although the increase in plasma IDE activity was only marginal, a positive correlation between IL-6 and IDE activity, and between IL-6 and IDE protein expression, was observed. Our outcomes indicate a novel function of IL-6 on the insulin metabolism expanding the possibilities for new potential therapeutic strategies, focused on insulin degradation, for the treatment and/or prevention of diseases related to hyperinsulinemia, such as obesity and T2DM.Impairment of the insulin-degrading enzyme (IDE) is associated with obesity and type 2 diabetes mellitus (T2DM). Here, we used 4-mo-old male C57BL/6 interleukin-6 (IL-6) knockout mice (KO) to investigate the role of this cytokine on IDE expression and act7112FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2014/24719-7; 2015/12611-

    Age-related changes in mitochondrial membrane composition of rainbow trout (Oncorhynchus mykiss) heart and brain

    Get PDF
    Membrane composition, particularly of mitochondria, could be a critical factor by determining the propagation of reactions involved in mitochondrial function during periods of high oxidative stress such as rapid growth and aging. Considering that phospholipids not only contribute to the structural and physical properties of biological membranes, but also participate actively in cell signaling and apoptosis, changes affecting either class or fatty acid compositions could affect phospholipid properties and, thus, alter mitochondrial function and cell viability. In the present study, heart and brain mitochondrial membrane phospholipid compositions were analyzed in rainbow trout during the four first years of life, a period characterized by rapid growth and a sustained high metabolic rate. Specifically, farmed fish of three ages (1-, 2- and 4-years) were studied, and phospholipid class compositions of heart and brain mitochondria, and fatty acid compositions of individual phospholipid classes were determined. Rainbow trout heart and brain mitochondria showed different phospholipid compositions (class and fatty acid), likely related to tissue-specific functions. Furthermore, changes in phospholipid class and fatty acid compositions with age were also tissue-dependent. Heart mitochondria had lower proportions of cardiolipin (CL), phosphatidylserine (PS) and phosphatidylinositol, and higher levels of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) with age. Heart mitochondrial membranes became more unsaturated with age, with a significative increase of peroxidation index in CL, PS and sphingomyelin (SM). Therefore, heart mitochondria became more susceptible to oxidative damage with age. In contrast, brain mitochondrial PC and PS content decreased in 4-year-old animals while there was an increase in the proportion of SM. The three main phospholipid classes in brain (PC, PE and PS) showed decreased n- 3 polyunsaturated fatty acids, docosahexaenoic acid and peroxidation index, which indicate a different response of brain mitochondrial lipids to rapid growth and maturation
    corecore